Tính giá trị biểu thức
M = \(\frac{5x^2-7x+1}{3x-1}\) với I x I = \(\frac{1}{2}\)
Tính giá trị biểu thức :
\(C=\frac{5x^2-7x+1}{3x-1}\)với \(x=\frac{1}{2}\)
Tính giá trị biểu thức :
\(C=\frac{5x^2-7x+1}{3x-1}\) với \(\left|x\right|=\frac{1}{2}\)
tính giá trị biểu thức \(\frac{1}{x^2+x+1}\)+\(\frac{1}{x^2+3x+2}\)+\(\frac{1}{x^2+5x+6}\)+\(\frac{1}{x^2+7x+12}\)
Thu gọn biểu thức rồi tính giá trị biểu thức
\(M=\left(-\frac{1}{2}x^2+5x^2y^3-8x^3y^2\right)-\left(5x^2y^3-7x^3y^2+6x^2+\frac{5}{3}y\right)\)
Với \(x=\frac{-1}{2},y=25\)
=-1/2x^2+5x^2y^3-8x^3y^2-5x^2y^3+7x^3y^2-6x^2-5/3y
=(-1/2x^2+6x^2)+(5x^2y^3-5x^2y^3)+(-8x^3y^2-7x^3y^2)+5/3y
=11/2x^2+0-15x^3y^2+5/3y
=11/2x^2-15x^3y^2+5/3y
thay x=-1/2 , y=25 vào giá trị biểu thức M ta đc
11/2.(-1/2)^2-15.(-1/2)^3.25^2+5/3.25=7273/6
vậy tại x=-1/2 , y=25 vào giá trị biểu thức M có giá trị là 7273/6
Tìm giá trị của biểu thức\(M=\frac{5x^2-7x+1}{3x-1}Với\) x=\(\frac{1}{2}\)hoặc x=\(\frac{-1}{2}\)
Thay x = \(\dfrac{1}{2}\) vào biểu thức M ta có :
\(\dfrac{5.(\dfrac{1}{2})^2-7.\dfrac{1}{2}+1}{3.\dfrac{1}{2}-1}\) = \(\dfrac{\dfrac{-5}{4}}{\dfrac{1}{2}}\) = \(\dfrac{-5}{8}\)
Thay x=\(\dfrac{-1}{2}\) vào biểu thức M ta có :
\(\dfrac{5.(\dfrac{-1}{2})^2-7.(\dfrac{-1}{2})+1}{3.(\dfrac{-1}{2})-1}\) \(= \dfrac{\dfrac{23}{4}}{\dfrac{-5}{2}}\) \(= \dfrac{-115}{8}\)
cho biểu thức
\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)
tính giá trị của P khi x thỏa mãn \(x^3-x^2+2=0\)
\(ĐKXĐ:\)\(x\ne\left\{0;1;2;3;4;5\right\}\)
\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)
\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}\)
\(=\frac{1}{x-5}-\frac{1}{x}\)
\(=\frac{5}{x\left(x-5\right)}\)
Ta có: \(x^3-x^2+2=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-2x+2\right)=0\)
Xét: \(x^2-2x+2=\left(x-1\right)^2+1\)\(>0\)
\(\Rightarrow\)\(x+1=0\)
\(\Leftrightarrow\)\(x=-1\)(t/m)
Vậy tại \(x=-1\) thì:
\(P=\frac{5}{-1\left(-1-5\right)}=\frac{5}{6}\)
ĐKXĐ \(x\ne0,1,2,3,4,5\)
\(P=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(P=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
\(P=\frac{1}{x-5}-\frac{1}{x}\)
\(P=\frac{5}{x\left(x-5\right)}\)
Cho biểu thức \(E=\left(\frac{x-1}{3x-1}-\frac{x}{3x+1}-\frac{2-5x}{1-9x^2}\right):\left(1-\frac{3x-2}{3x-1}\right)\)
a, Rút gọn biểu thức E
b, Tính giá trị của biểu thức E biết \(x=-\frac{1}{2}\)
c, Tìm giá trị nguyên của x để biểu thức E nhận giá trị nguyên
Câu 1 : Cho 2 biểu thức :
P=\(\frac{2x-4}{x^2-4x+4}\)-\(\frac{1}{x-2}\)
Q= \(\frac{3x+15}{x^2-9}+\frac{1}{x+3}-\frac{2}{x-3}\)
a,Tính giá trị của biểu thức P và biểu thức Q tại x=2
b, Tìm x để P< 0
c, Với giá trị nào của x thì Q có giá trị nguyên
Câu 2 : Tính
a, \(\frac{20x^3}{11y^2}.\frac{55y^5}{15x}\)
b,\(\frac{5x-2}{2xy}-\frac{7x-4}{2xy}\)
a) \(P=\dfrac{2x-4}{x^2-4x+4}-\dfrac{1}{x-2}=\dfrac{2\left(x-2\right)}{\left(x-2\right)^2}-\dfrac{1}{x-2}\)
\(=\dfrac{2x-4-\left(x-2\right)}{\left(x-2\right)^2}=\dfrac{x-2}{\left(x-2\right)^2}=\dfrac{1}{x-2}\)
ĐKXĐ: \(x\ne2\) nên với x = 2 thì P không được xác định
\(Q=\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3x+15+x-3-2\left(x+3\right)}{x^2-9}=\dfrac{2x+6}{x^2-9}=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x-3}\)
Tại x = 2 thì \(Q=\dfrac{2}{2-3}=\dfrac{2}{-1}=-2\)
b) Để P < 0 tức \(\dfrac{1}{x-2}< 0\) mà tứ là 1 > 0
nên để P < 0 thì x - 2 < 0 \(\Leftrightarrow x< 2\)
Vậy x < 2 thì P < 0
c) Để Q nguyên tức \(\dfrac{2}{x-3}\) phải nguyên
mà \(\dfrac{2}{x-3}\) nguyên khi x - 3 \(\inƯ_{\left(2\right)}\)
hay x - 3 \(\in\left\{-2;-1;1;2\right\}\)
Lập bảng :
x - 3 -1 -2 1 2
x 2 1 4 5
Vậy x = \(\left\{1;2;4;5\right\}\) thì Q đạt giá trị nguyên
a) \(\dfrac{20x^3}{11y^2}.\dfrac{55y^5}{15x}=\dfrac{20.5.11.x.x^2.y^2.y^3}{11.3.5.x.y^2}=\dfrac{20x^2y^3}{3}\)
b) \(\dfrac{5x-2}{2xy}-\dfrac{7x-4}{2xy}=\dfrac{5x-2-7x+4}{2xy}=\dfrac{-2x+2}{2xy}=\dfrac{2\left(1-x\right)}{2xy}=\dfrac{1-x}{xy}\)
Với giá trị nào của X thì ta có bất dẳng thức \(\frac{3x-4}{6x+5}+\frac{7x}{2}\le\frac{7x+9}{2x+1}+\frac{5x}{6}\)