Tìm giá trị nhỏ nhất của biểu thức A=Ix-2010I+Ix-2012I+Ix-2014I
Tìm giá trị nhỏ nhất của biểu thức sau:
A= I x-2010I+Ix-2011I
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2010\right|+\left|x-2011\right|\ge\left|x-2010+2011-x\right|=1\)
\(\Rightarrow A\ge1\)
Dấu = khi \(\left(x-2010\right)\left(x-2011\right)\ge0\)\(\Leftrightarrow2010\le x\le2011\)
\(\Rightarrow\begin{cases}\left(x-2010\right)\left(x-2011\right)\\2010\le x\le2011\end{cases}\)\(\Rightarrow\begin{cases}x=2010\\x=2011\end{cases}\)
Vậy MinA=1 khi x=2010 hoặc x=2011
Tìm giá trị nhỏ nhất của C=Ix-2013I+Ix-2014I.
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(C=\left|x-2013\right|+\left|x-2014\right|\)
\(=\left|x-2013\right|+\left|2014-x\right|\)
\(\ge\left|x-2013+2014-x\right|=1\)
Dấu "=" khi \(2013\le x\le2014\)
Vậy \(Min_C=1\) khi \(2013\le x\le2014\)
Cho a, b, c, d là các số dương. Tìm giá trị nhỏ nhất của biểu thức: A= Ix - aI + Ix - bI + Ix- cI + Ix- dI
A=I(x-a+x-b+x-c+x-d)
A= I(a-b+c-d)
do a,b,c,d la cac so duong=> a-b+c-d<=0
=>giá trị nhỏ nhất của A la 0
Tìm giá trị nhỏ nhất hoặc lớn nhất
A = Ix+ 3I+Ix+7I
\(B=\frac{13}{17-x}\)
\(C=\frac{20-x}{x-12}\)
D= Ix-2012I + I789-xI
tìm x để biểu thức
B=Ix-4I+2015 có giá trị nhỏ nhất.
A=-2015 -Ix+8I có giá trị lớn nhất.
B có giá trị nhỏ nhất khi :
/x+8/=0
=> x+8=0
x=0-8
x= -8
Vậy B có giá trị nhỏ nhất khi x= -8
A có giá trị lớn nhất khi :
/x+8/=0
=>x+8=0
x=0-8
x= -8
Vậy A có giá trị nhỏ nhất khi x= -8
( lưu ý : "/" là giá trị tuyệt đối )
1 Tìm GTNN của biểu thức
a,A=I2x-4I+3-2x
b,B=Ix+1I+Ix+2I+Ix+3I+x+4I
2 Tìm giá trị lớn nhất của biểu thức
A=Ix-2I-Ix-7I
1 Tìm GTNN của biểu thức
a,A=I2x-4I+3-2x
b,B=Ix+1I+Ix+2I+Ix+3I+x+4I
2 Tìm giá trị lớn nhất của biểu thức
A=Ix-2I-Ix-7I
1 Tìm GTNN của biểu thức
a,A=I2x-4I+3-2x
b,B=Ix+1I+Ix+2I+Ix+3I+x+4I
2 Tìm giá trị lớn nhất của biểu thức
A=Ix-2I-Ix-7I
1 Tìm GTNN của biểu thức
a,A=I2x-4I+3-2x
b,B=Ix+1I+Ix+2I+Ix+3I+x+4I
2 Tìm giá trị lớn nhất của biểu thức
A=Ix-2I-Ix-7I