Tìm GTLN của biểu thức M = - | x - 2/5 | + 2018
a) Tìm GTNN của biểu thức A = x − 2018 + − 100 + x − 2019
b) Tìm GTLN của biểu thức B = 4 − 5 x − 2 − 3 y + 12
cho biểu thức P=-(x+5)2-|x-y+1|+2018. Tìm GTLN(P)
\(P=-\left(x+5\right)^2-\left|x-y+1\right|+2018\le2018\)
\("="\Leftrightarrow\hept{\begin{cases}x=-5\\y=-4\end{cases}}\)
Nhan thay: \(\hept{\begin{cases}\left(x-5\right)^2\ge0\\\left|x-y+1\right|\ge0\end{cases}}\)\(\forall x,y\)
=> \(\hept{\begin{cases}-\left(x+5\right)^2\le0\\-\left|x-y+1\right|\le0\end{cases}}\) \(\forall x,y\)
=> \(-\left(x-5\right)^2-\left|x-y+1\right|\le0\)
<=> \(-\left(x-5\right)^2-\left|x-y+1\right|+2018\le2018\)
hay \(P\le2018\)
Dau "=" xra <=> \(\hept{\begin{cases}x-5=0\\x-y+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=5\\y=6\end{cases}}\)
Vay...
Tìm GTLN của biểu thức A=-x^4+2x^3-3x^2+4x+2018
\(A=-\left(x^4-2x^3+3x^2-4x-2018\right)=-\left[\left(x^4+x^2+4-2x^3+4x^2-4x\right)-2x^2\right]+2022\)
\(=-\left[\left(\left(x^2\right)^2+\left(x\right)^2+\left(2\right)^2-2\cdot x^2\cdot x+2\cdot x^2\cdot2-2\cdot x\cdot2\right)-2x^2\right]+2022\)
\(=-\left[\left(x^2-x+2\right)^2-2x^2\right]+2022\le2022\)
Mong bạn thông cảm, mình không chắc là đã giải đúng, có gì bỏ qua cho mình nhé!
Tìm GTLN của biểu thức A= /x-2019/-/x-2018/
\(A=\left|x-2019\right|-\left|x-2018\right|\)
Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)ta có :
\(A\ge\left|x-2019-x+2018\right|=\left|-1\right|=1\)
Vậy ................
Nhầm Chỗ A
Sửa thành \(A\le\left|x-2019-x+2018\right|=\left|-1\right|=1\)
cho x,y,z >0 thỏa mãn xyz=1. tìm gtln của biểu thức M= 2018\(x^2+y^2+1)+2018\(z^2+y^2+1)+2018\(z^2+x^2+1)
Tìm GTLN của biểu thức :C=2017/|x|+2018
Tìm GTLN hoặc GTNN của biểu thức C = |x|+2017/2018
C = {x} _576+6967=986=79
Có:\(\left|x\right|\ge0\)
\(\Rightarrow\left|x\right|+2017\ge2017\)
\(\Leftrightarrow\frac{\left|x\right|+2017}{2018}\ge\frac{0+2017}{2018}=\frac{2017}{2018}\)
Vậy GTNN của C =2017/2018 khi và chỉ khi x=0
Tìm GTLN hoặc GTNN của biểu thức C=|x|+2017/2018
\(C=|x|+\frac{2017}{2018}\)
vì \(|x|\ge0\forall x\)
\(\Rightarrow|x|+\frac{2017}{2018}\ge\frac{2017}{2018}\forall x\)\(\Rightarrow C\ge\frac{2017}{2018}\)
Dấu "=" xảy ra khi x=0
vậy \(Cmin=\frac{2017}{2018}\Leftrightarrow x=0\)
B1. Cho x,y thỏa mãn:\(x^{2018}+y^{2018}=2\)Tìm GTLN của biểu thức: \(Q=x^2+y^2\)
B2. Cho x,y là các số thực thoă mãn \(x^4+y^4=1\)Tìm GTLN của: \(F=2019x+2y^5\)
B3. Cho x,y thỏa mãn: \(Q=36x^2+16y^2-9=0\)
Tìm GTNN và GTLN của: \(U=y-2x+5\)
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
x,y có nguyên đâu mà bạn giải như vậy