Tìm x:
10+1/8x=15+1/64x=20+1/512x
Tìm x, biết:
a) x + 99:3 = 55
b) (x - 25): 15=20
c) (3.x - 15).7 = 42
d) (8x - 16)(x-5)=0
e) x.(x+1)=2+4+6+8+10+...+2500
a, \(x\) + 99: 3 = 55
\(x\) + 33 = 55
\(x\) = 55 - 33
\(x\) = 22
b, (\(x\) - 25):15 = 20
\(x\) - 25 = 20 x 15
\(x\) - 25 = 300
\(x\) = 300 + 25
\(x\) = 325
c, (3\(x\) - 15).7 = 42
3\(x\) - 15 = 42:7
3\(x\) - 15 = 6
3\(x\) = 6 + 15
3\(x\) = 21
\(x\) = 21: 3
\(x\) = 7
d, (8\(x\) - 16).(\(x\) -5) = 0
\(\left[{}\begin{matrix}8x-16=0\\x-5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}8x=16\\x=5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=16:8\\x=5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy \(x\) \(\in\) {2; 5}
1) x^10-4x^8+4x^6
2) m ³+27
3) x ³+8
4) 1/27+a ³
5) 8x ³+27y ³
6) 1/8x ³+8y ³
7) 8x^6-27y ³
8) 1/8x ³-8
9) 1/64x^6-125y ³
10) (a+b) ³-c ³
11) x ³-(y-1) ³
12) x^6+1
1: Ta có: \(x^{10}-4x^8+4x^6\)
\(=x^6\left(x^4-4x^2+4\right)\)
\(=x^6\left(x-2\right)^2\left(x+2\right)^2\)
2: Ta có: \(m^3+27\)
\(=\left(m+3\right)\left(m^2-3m+9\right)\)
3: Ta có: \(x^3+8\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
4: Ta có: \(\frac{1}{27}+a^3\)
\(=\left(\frac{1}{3}+a\right)\left(\frac{1}{9}-\frac{a}{3}+a^2\right)\)
5: Ta có: \(8x^3+27y^3\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
6: Ta có: \(\frac{1}{8}x^3+8y^3\)
\(=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)
7: Ta có: \(8x^6-27y^3\)
\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
8: Ta có: \(\frac{1}{8}x^3-8\)
\(=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)
9: Ta có: \(\frac{1}{64}x^6-125y^3\)
\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)
10: Ta có: \(\left(a+b\right)^3-c^3\)
\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)\cdot c+c^2\right]\)
\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)
11: Ta có: \(x^3-\left(y-1\right)^3\)
\(=\left[x-\left(y-1\right)\right]\cdot\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]\)
\(=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)
12: Ta có: \(x^6+1\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
1) \(x^{10}-4x^8+4x^6\)
\(=x^6\left(x^4-4x^2+4\right)\)
2) \(m^3+27=m^3+3^3=\left(m+3\right)\left(m^2-3m+3^2\right)\)
3) \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+2^2\right)\)
4) \(\frac{1}{27}+a^3=\left(\frac{1}{3}\right)^3+a^3=\left(\frac{1}{3}+a\right)\left[\left(\frac{1}{3}\right)^2-\frac{1}{3}a+a^2\right]\)
5) \(8x^3+27y^3=\left(2x\right)^3+\left(3y\right)^3=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
6) \(\frac{1}{8}x^3+8y^3=\left(\frac{1}{2}x\right)^3+\left(2y\right)^3=\left(\frac{1}{2}x+2y\right)\left[\left(\frac{1}{2}x\right)^2-\frac{1}{2}x.2y+\left(2y\right)^2\right]=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)
8) \(\frac{1}{8}x^3-8=\left(\frac{1}{2}x\right)^3-2^3=\left(\frac{1}{2}x-2\right)\left[\left(\frac{1}{2}x\right)^2+\frac{1}{2}x.2+2^2\right]=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)
10) \(\left(a+b\right)^3-c^3=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]=\left(a+b-c\right)\left[\left(a^2+2ab+b^2\right)+ac+bc+c^2\right]=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)11) \(x^3-\left(y-1\right)^3=\left(x-y+1\right)\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]=\left(x-y+1\right)\left[x^2+xy-x+\left(y^2-2y+1\right)\right]=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)
P/s: Đăng ít thôi chớ bạn!
Tìm x, biết:
1) 14x - 5 = 8x + 10
2) 15 + 5x = 3x + 30
3) 2x - 5 = 15- 3x
4) 2 ( 3x + 5 ) + 3 ( x + 1 ) = 6x + 20
5) 4 ( x - 3 0 + 5 ( x - 3 ) = 18
1) 14x-8x=10+5
x(14-8)=15
x6=15
x=15/6
2)5x-3x=30-15
2x=15
x=15/2
3)làm tương tự
1) x=2,5
2) x=7,5
3) x=4
4) x=7/3
5) x=8,25
tìm x
11, (x+3)3 = 125
12, (2x)4 = 16
13, 32 : (3x - 2) = 23
14, 20 - 2(x + 4) = 23
15, 14 ⋮(2.x+3)
16, 30- [4(x - 2)+15] = 3
17, 27 : ( x - 1)= 32
18, (10 + 2x) : 42011= 42013
19, (x + 5) ⋮(x +2)
20,[(8x - 12) : 4].33=36
mong các bạn giúp mình ^^
11: Ta có: \(\left(x+3\right)^3=125\)
\(\Leftrightarrow x+3=5\)
hay x=2
12: Ta có: \(\left(2x\right)^4=16\)
\(\Leftrightarrow x^4=1\)
hay \(x\in\left\{1;-1\right\}\)
11: Ta có:
hay x=2
12: Ta có:
4
13) 32:(3x-2)=2^3
32:(3x-2)=8
3x-2=32:8=4
3x=4+2=6
x=6:3=2
⇔x=2
1) Tìm dư trong phép chia 3(22 + 1)(24 + 1) … (220 + 1) khi chia cho 5
2) Tìm giá trị lớn nhất của biểu thức C = - 2x2 + 8x – 15
3) Tìm x biết: (3x + 1)2 - 10(3x + 1)(x + 1) + (5x + 5)2 = 7
Phương pháp đặt ẩn dụ
VD: (x-1)(x-3)(x-5)(x-7)-20
<=>(x-1)(x-7)(x-3)(x-5)-20
<=>(x2-8x+7x)(x2-8x+15)-20
<=>Ta đặt (x2-8x+7x)=t
= t2+8t-20
=t2+10t-2t-20
=(t2+10t)+(2t+20)
=t(t+10)+2(t+10)
=(t+10)(t+2)
Ta thay t=x2-8x+7
ghi lại đề bài
(x2-8x+7+10)(x2-8x+7+2)
Bài tập mik ko hiểu mong ae giúp
(x-1)(x+2)(x+3)(x+6)-20
(x+2)(x+4)(x+6)(x+8)+16
Giúp mình v
Bài10872917292872917 tìm x bt
5x-16=40+x
4x-10=15-x
-12+x=5x-2
7x-4=20+3x
5x-7=20+3x
x+15=7+6x
17-x=7-6x
3x+(-21)=12-8x
125:(3x-13)=25
541+(218-z)=735
3(2x+1)-19=14
175-5(x+3)=85
4x-40=|4|+12
x+15=20-4x
8x+|-3|=-4x+39
6(x-2)+(-2)=20-4x
5x-16=40+x
=> 5x-16-x = 40
=> 5x-x -16=40
4x-16=40
4x= 40+16
4x=56
x= 56:4
x=14
Vậy...
4x-10=15-x
=> 4x-10+x= 15
4x+x -10=15
5x= 15+10
5x= 25
x= 25:5
x=5
Vậy....
5x -16=40+x
=> 5x-x=40+16
=>4x=56
=>x=56:4
x=14
Tìm x để biểu thức sau có nghĩa:
c) \(\dfrac{1}{\sqrt{4x^2-12x+9}}\)
d) \(\dfrac{1}{\sqrt{x^2-x+1}}\)
e) \(\dfrac{1}{\sqrt{x^2-8x+15}}\)
f) \(\dfrac{1}{\sqrt{3x^2-7x+20}}\)
1)ĐK:`4x^2-12x+9>0`
`<=>(2n-3)^2>0`
`<=>2n-3 ne 0`
`<=>n ne 3/2`
`d)x^2-x+1`
`=(x-1/2)^2+3/4>0AAx`
`=>` bt xd `AAx in RR`
e)ĐK:`x^2-8x+15>0`
`<=>x^2-3x-5x+15>0`
`<=>x(x-3)-5(x-3)>0`
`<=>(x-3)(x-5)>0`
`TH1:` \(\begin{cases}x-3>0\\x-5>0\\\end{cases}\)
`<=>` \(\begin{cases}x>3\\x>5\\\end{cases}\)
`<=>x>5`
`TH2:` \(\begin{cases}x-3<0\\x-5<0\\\end{cases}\)
`<=>` \(\begin{cases}x<3\\x<5\\\end{cases}\)
`<=>x<3`
f)ĐK:`3x^2-7x+20>0`
`<=>x^2-2x+1+2x^2-5x+19>0`
`<=>(x-1)^2+2(x-5/2)^2+13/2>0` luôn đúng
c) Để biểu thức \(\dfrac{1}{\sqrt{4x^2-12x+9}}\) có nghĩa thì \(4x^2-12x+9>0\)
\(\Leftrightarrow\left(2x-3\right)^2>0\)
\(\Leftrightarrow2x-3\ne0\)
\(\Leftrightarrow2x\ne3\)
hay \(x\ne\dfrac{3}{2}\)
d) Để biểu thức \(\dfrac{1}{\sqrt{x^2-x+1}}\) có nghĩa thì \(x^2-x+1>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}>0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)(luôn đúng)
e) Để biểu thức \(\dfrac{1}{\sqrt{x^2-8x+15}}\) có nghĩa thì \(x^2-8x+15>0\)
\(\Leftrightarrow\left(x-4\right)^2>1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4>1\\x-4< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< 3\end{matrix}\right.\)
f) Để biểu thức \(\dfrac{1}{\sqrt{3x^2-7x+20}}\) có nghĩa thì \(3x^2-7x+20>0\)
\(\Leftrightarrow x^2-\dfrac{7}{3}x+\dfrac{20}{3}>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{191}{36}>0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2+\dfrac{191}{36}>0\)(luôn đúng)