Cho tỉ lệ thức a/b =c/d. Chứng tỏ rằng :
a, a+b/b= c+d/d
b, a-b/b= c-d/d
Cho tỉ lệ thức : a/b=c/d. Chứng tỏ rằng:
a, a+b/b=c+d/d
b, a-b/b=c-d/d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1=\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{b}=\frac{c-d}{d}\)
Cho tỉ lệ thức: a/b=c/d. Chứng tỏ rằng; (a+2c)(b+d)=(a+c)(b+2d)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.
Ta có:
$(a+2c)(b+d)=(bk+2dk)(b+d)=k(b+2d)(b+d)(1)$
$(a+c)(b+2d)=(bk+dk)(b+2d)=k(b+d)(b+2d)(2)$
Từ $(1); (2)\Rightarrow (a+2c)(b+d)=(a+c)(b+2d)$
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(b\ne d\right)\)Chứng tỏ rằng ta có các tỉ lệ thức:
\(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Ta có : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\left(đpcm\right)\)
Giải :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó, ta có : \(\frac{bk-b}{bk+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)(1)
\(\frac{dk-d}{dk+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}=\frac{k-1}{k+1}\)(2)
Từ (1) và (2), suy ra : \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(=\)\(\frac{a\pm b}{c\pm d}\)\(=\frac{a-b}{c-d}=\frac{a+b}{c+d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)(đpcm)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(b\ne d\right)\)Chứng tỏ rằng ta có các tỉ lệ thức:
\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Bn chỉ cần áp dụng t/c dãy tỉ số bằng nhau cho tổng và hiệu là ra nhé
Cho tỉ lệ thức a/b= c/d Chứng tỏ rằng
a, a+b/b= c+d/d
b, a-b/b= c-d/d
Cho tỉ lệ thức a/b=c/d. Chứng tỏ ta có tỉ lệ thức (a+c)²/(b+d)²
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}=\left(\frac{a+c}{b+d}\right)^2\)
\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right).\)
Chúc bạn học tốt!
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có:
\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\) (*)
Lại có:
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (**)
Từ (*) và (**) \(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},b\ne0,d\ne0\).Chứng tỏ rằng nếu \(a\ne\mp b,c\ne\mp d\) thì ta có các tỉ lệ thức:
\(\frac{a}{a+b}=\frac{c}{c+d},\frac{a}{a-b}=\frac{c}{c-d},\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)
b) Ta có:
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)
c) Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho tỉ lệ thức: a/b=c/d.Chứng tỏ rằng a-b/a+b=c-d/c+d
Giả sữ:
a/b=c/d tương đương (#) (a+b)/(a-b) = (c+d)/(c-d)
Ta có:
(a+b)/(a-b) = (c+d)/(c-d)
# (a+b)(c-d) = (c+d)(a-b)
# ac-ad+bc-bd = ac-bc+ad-bd
# 2ad = 2bc
# a/b = c/d – điều phải chứng minh.
Đặt: a/b = c/d = k => a = bk, c = dk
Ta có:
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1)
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2)
Từ (1) và (2) => a+b/a-b = c+d/c-d
1.cho tỉ lệ thức a/b=c/d chứng minh rằng ta có tỉ lệ thức
a+b/b=c+d/d;a+b/a-b/c+d/c-d