>n giải giúp mình với, Câu này 0,5 đ trong bài hki của huyện mih
Cho x+y+z=0, xyz#0. TÍnh giá trị của biểu thức
A=\(\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{z^2+x^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)
Mình xin cảm ơn
Cho x,y,z > 0 thỏa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\). Tìm giá trị lớn nhất của P=xyz
Đây là bài 4 của đề thi HSG Toán 9 Huyện Nghi Lộc Năm 2019-2020 . Các bạn giải giúp với , có đáp án cả đề càng tốt kkkkkkk
Ta có: \(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Tương tự các BĐT còn lại rồi nhân theo vế thu được:
\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}.\frac{zx}{\left(z+1\right)\left(x+1\right)}.\frac{xy}{\left(x+1\right)\left(z+1\right)}}\)
\(\Rightarrow P=xyz\le\frac{1}{8}\)
Đẳng thức xảy ra khi x = y = z = 1/2
Vậy...
Các bạn giúp mình giải bài này với: Tìm giá trị của x,y,z biết |1/4-x| + |x-y+z| + |2/3 +y| =0
Vì |1/4 - x| ≥ 0; |x - y + z| ≥ 0; |2/3 + y| ≥ 0
=> |1/4 - x| + |x - y + z| + |2/3 + y| ≥ 0
Dấu " = " xảy ra <=>. \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\\frac{1}{4}-y-\frac{2}{3}=0\\y=\frac{-2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{-5}{12}\\z=\frac{-2}{3}\end{cases}}\)
Vậy ....
Đề bài: Phân tích đa thức thành nhân tử:
x3.(z-y2)+y3(x-z2)+z3(y-x2)+xyz(xyz-1)
Làm giúp mình bài này với mấy bạn
Cho x + y + z = 1 ; x , y , z > 0
CMR : \(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\) >/ 14
Cho x , y , z thuộc Z ; x,y,z khác 0 và \(\sqrt{x+y+z-2018}+\sqrt{2018\left(xy+yz+zx-xyz\right)}=0\)
Tính S = \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
CÁC BẠN GIẢI GIÚP MÌNH CHI TIẾT BÀI NÀY VỚI !
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z) giải được mình sẽ tích đúng cho tất cả các câu trả lời của bạn
Bạn viết đề rõ ràng hơn nhé, mình không đọc được :(
Giúp mình bài này với, có hậu tạ:
Giải HPT
\(x^3=xyz+1\)
\(y^3=xyz+3\)
\(z^3=xyz+10\)
Bài 6: Tính GTBT (x+2xy+1)/(x+xy+xz+1)+(y+2yz+1)/(y+yz+yx+1) +(z+2zx+1)/(z+zx+zy+1) biết xyz=1
có ai giúp mk giải bài này với
mk cảm ơn nhiều
Cho \(xyz=1\)
Chứng minh \(\frac{x}{y^2+2}+\frac{y}{z^2+2}+\frac{z}{x^2+2}\ge1\)
Phiền các bạn giải giúp mình bài này vs
Áp dụng bđt Cô si cho 3 số ta đc
\(\frac{x}{y^2+2}+\frac{y}{z^2+2}+\frac{z}{x^2+2}\ge3\sqrt[3]{\frac{xyz}{\left(y^2+2\right)\left(z^2+2\right)\left(x^2+2\right)}}\)
\(VT\ge3\sqrt[3]{\frac{1}{27}=}1\)
Dấu " = " xảy ra <=> x = y = z = 1
p/s : quên cách làm khúc giữa
Áp dụng bất đẳng thức Cô si cho 3 số thực ko âm ta đc :
\(\frac{x}{y^2+2}+\frac{y}{z^2+2}+\frac{z}{x^2+2}\ge3\sqrt[3]{\frac{xyz}{\left(y^2+2\right)\left(z^2+2\right)\left(x^2+2\right)}}\)
\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{1+2y^2x^2+2z^2x^2+2z^2y^2+4x^2+4z^2+4y^2+8}}\)( phân tích đa thức thành nhân tử )
\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{9+\frac{2}{z^2}+\frac{2}{y^2}+\frac{2}{x^2}+4x^2+4z^2+4y^2}}\)( vì \(xyz=1\Rightarrow x^2y^2z^2=1\Rightarrow x^2y^2=\frac{1}{z^2}\)các phân số khác chứng minh tương tự )
\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{9+\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}}}\)( quy đồng mẫu số ) ( A )
Áp dụng bất đẳng thức Cô si cho 3 số thực ko âm ta được :
\(\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}\ge3\sqrt[3]{\frac{\left(2+4z^4\right)\left(2+4y^4\right)\left(2+4x^4\right)}{x^2y^2z^2}}\) ( 1 )
Ta có :
\(2+4x^4\ge2+4.1^4=6\) ( 2 )
\(2+4y^4\ge2+4.1^4=6\) ( vì x^4 , y^4 , z^4 đều là các lũy thừa số mũ chẵn ) ( 3 )
\(2+4z^4\ge2+4.1^4=6\)( 4 )
x^2 . y^2 . z^2 = ( xyz )^2 = 1^2 = 1 ( 5 )
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) , ( 5 ) suy ra :
\(\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}\ge3\sqrt[3]{\frac{6^3}{1}}=18\) ( B )
Thay B vào A ta đc :
\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{9+\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}}}\ge3\sqrt[3]{\frac{1}{9+18}}=1\)
Ai giỏi toán hiện hồn giải hộ tớ bài này :3
Cho \( , y , z > 0 \) và không có 2 số nào đồng thời bằng 0 cmr:
\(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}\)
\(\ge2\sqrt{1+\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
đề cho thêm x nữa hén=) , p/s đưa đề đàng hoàng có thịn cảm ng làm hén , ụa mà hiện hồn là sao.-. ghét nghỉ=))