Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Quang Trường
Xem chi tiết
Lại Thị Ngọc Mai
Xem chi tiết
Nguyen HIen
5 tháng 3 2017 lúc 21:43

-6;(-1);5 

Trịnh Trần Khánh Ngọc
Xem chi tiết
Không Có Tên
Xem chi tiết
Nguyễn Ngọc Phương Linh
25 tháng 3 2016 lúc 22:50

Giả sử 26n + 17 = k2 ( với k là số tự nhiên lẻ ). Khi đó:

           26n + 13 = ( k - 2 ).( k + 2 ) <=> 13.( 2n + 1 ) = ( k - 2 ).( k + 2 )

Do 13.( 2n + 1 ) chia hết cho 13 nên ( k - 2 ) chia hết cho 13 hoặc ( k + 2 ) chia hết cho 13.

Nếu ( k - 2 ) chia hết cho 13 thì k = 13t + 2 ( t là số lẻ ), khi đó...

zoombie hahaha
Xem chi tiết
Phạm Ý Linh
Xem chi tiết
Phạm Quang Lộc
30 tháng 1 2022 lúc 18:16

hello

Hằng Nguyễn Thị Kim
Xem chi tiết
N.T.M.D
Xem chi tiết
Ngô Linh
Xem chi tiết
Vũ Việt Hà
7 tháng 10 2017 lúc 19:04

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

Thành Nam Vũ
22 tháng 1 2023 lúc 9:39

Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)

<=> 9=m2-n2

<=> 9=(m-n)(m+n)

Vì n thuộc N => m-n thuộc Z, m+n thuộc N

=> m-n,m+n thuộc Ư(9)

mà m+n>m-n

nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)

 Vậy A là SCP <=>n=4

Hoàng Bình Minh
Xem chi tiết
Trần Quốc Đạt
2 tháng 1 2017 lúc 20:58

Gọi \(k^2=26n+17\), tức là \(k^2\) đồng dư 17 (mod 26).

Ta giải phương trình đồng dư này bằng cách cho \(k\) đồng dư 0, cộng trừ 1, ..., cộng trừ 13.

Thì sẽ thấy \(k=26x+11\) hoặc \(k=26x+15\).

Vậy \(n=\frac{\left(26x+11\right)^2-17}{26}\) hoặc \(n=\frac{\left(26x+13\right)^2-17}{26}\) với mọi \(x\) nguyên không âm.