chung minh (x^2 - 2x + 4)(x^4 - 2x^2 + 8) = 21 bài này nằm trong đề thi hsg ai cứu mik với
Giải phương trình: \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
Câu này trong đề thi hsg toán 9 tỉnh bắc giang năm 2014-2015. Ai có đáp án cả đề thì cho mk xin nhé . Mk cảm ơn :)))
Giải hệ phương trình: \(\hept{\begin{cases}2x+\frac{y}{\sqrt{4x^2+1}+2x}+y^2=0\\4\left(\frac{x}{y}\right)^2+2\sqrt{4x^2+1}+y^2=3\end{cases}}\)
Câu này trong đề thi hsg toán 9 tỉnh Thái Bình năm 2014-2015.
Ai có đáp án cả đề thì cho mk xin vs ạ. Mk cảm ơn :))))
Hjhj mình vừa giải trên F
\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\)
Làm giúp mik bài này với ạ mik cảm mơn
\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\left(đk:x\le\dfrac{9}{2}\right)\)
\(\Leftrightarrow x^2-2x+4+x^2+5+2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=81-36x+4x^2\)
\(\Leftrightarrow2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=2x^2-34x+72\)
\(\Leftrightarrow4\left(x^2-2x+4\right)\left(x^2+5\right)=4x^4+1156x^2+5184-136x^3+288x^2-4896x\)
\(\Leftrightarrow4x^4-8x^3+36x^2-40x+80=4x^4-136x^3+1444x^2-4896x+5184\)
\(\Leftrightarrow128x^3-1408x^2+4856x-5104=0\)
\(\Leftrightarrow128x^2\left(x-2\right)-1152x\left(x-2\right)+2552\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(128x^2-1152x+2552\right)=0\)
\(\Leftrightarrow x=2\left(tm\right)\)(do \(128x^2-1152x+2552>0\))
tìm số nguyên , biết :
a) (-4)2 + 21 + 2x = 36 : 33
b) 8 -2x = -12
c ) ( 79 + x ) - 43 = - (17 - 55 )
cứu mik vs 😱😱😘😘😫😫😭😭😓❤❤😔😅
a) (-4)² + 21 + 2x = 3⁶ : 3³
16 + 21 + 2x = 3³
37 + 2x = 27
2x = 27 - 37
2x = -10
x = -10 : 2
x = -5
b) 8 - 2x = -12
2x = 8 - (-12)
2x = 20
x = 20 : 2
x = 10
c) (79 + x) - 43 = -(17 - 55)
79 + x - 43 = 38
36 + x = 38
x = 38 - 36
x = 2
Giành cho các bạn thích bất đẳng thức.
Bài 1: Cho x, y, z là các số thực thỏa mãn \(4^x+4^y+4^z=1\)
Tìm giá trị lớn nhất của biểu thức:
\(S=2^{x+2y}+2^{y+2z}+2^{z+2x}-2^{x+y+z}.\)
Đoán thử xem bài này là đề thi chọn HSG Quốc gia của Tỉnh nào? Năm mấy?
Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd
\(S=ab^2+bc^2+ca^2-abc\)
WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)
\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)
Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)
WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương
\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\)
ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng
đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0)
bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)
Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD
Phùng Minh Quân ez thì làm khúc dưới cho em xem nào:)) (em đoán là dồn biến, cách đặt này giúp khử lũy thừa bậc cao khá hay:))
ai giúp mình giải bài này với được k mình đang cần gấp ( xin cảm ơn)
Bài 1:
a,\(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 2:
a,\(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
c, \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
d,\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Bài 3:
a, \(x^2-7x=6\sqrt{x+5}-30\)
b, \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
c, \(x+y+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{-5}\)( câu này có thể sai đề nha )
d, \(x^2+2x-\sqrt{x^2+2x+1}-5=0\)
ai giúp mình giải bài này với được k mình đang cần gấp ( xin cảm ơn)
Bài 1:
a,√3x+4−√2x+1=√x+3
b, √2x−5+√x+2=√2x+1
c, √x+4−√1−x=√1−2x
d, √x+9=5−√2x+4
Bài 2:
a,√x+4√x+4=5x+2
b, √x2−2x+1+√x2+4x+4=4
c, √x+2√x−1+√x−2√x−1=2
d,√x−2+√2x−5+√x+2+3√2x−5=7√2
Bài 3:
a, x2−7x=6√x+5−30
\(1+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=1\dfrac{2003}{2005}\)
Ai giúp mình với vì đây là bài mình bỏ dở trong đề thì vòng loại đội tuyển HSG, bây giờ cô dạy đội tuyển nói là ai chưa làm được bài này thì về suy nghĩ để làm. Giờ ai giúp mình với 😟
Phân số \(\dfrac{1}{4}\) ở trên là mình viết nhầm nhé. thực ra đề bài không có phân số này 😅
ai có thể giúp mình giải bài này với đc không (giải chi tiết hộ mình nhé,xin cảm ơn)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
VD1 :
a,\(\sqrt{2x-1}=\sqrt{2}-1\)
b,\(\sqrt{x+5}=3-\sqrt{2}\)
c,\(\sqrt{3}x^2-\sqrt{12}=0\)
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
VD2 :
a, \(\sqrt{2x+5}=\sqrt{1-x}\)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\)
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)