Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Jisoo
Xem chi tiết
secret1234567
Xem chi tiết
Phongg
21 tháng 12 2023 lúc 12:02

\(x^3+27x+\left(x+3\right)\left(x-9\right)\)
\(x^3+27x+x^2-6x-27\)
\(x^3+x^2+21x-27\)
Chịu

Nguyễn Lê Phước Thịnh
21 tháng 12 2023 lúc 14:35

Sửa đề: \(x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=\left(x+3\right)\left(x^2-2x\right)=x\cdot\left(x-2\right)\left(x+3\right)\)

nguyen ngoc ha
Xem chi tiết
👁💧👄💧👁
31 tháng 7 2021 lúc 15:03

\(x-\sqrt{x}-2\\ =x+\sqrt{x}-2\sqrt{x}-2\\ =\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)\\ =\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

Kim Anh
Xem chi tiết
Phong
16 tháng 8 2023 lúc 17:19

\(x^4-x^2+2x+2\)

\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)

\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)

\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)

Toru
16 tháng 8 2023 lúc 17:16

\(x^4-x^2+2x+2\)

\(=x^2\left(x^2-1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=\left(x+1\right)\left(x^3-x^2+2\right)\)

Mthien
Xem chi tiết

image.png

Hằng Ngụy
Xem chi tiết
Nguyễn Tùng Chi
22 tháng 3 2016 lúc 8:48

\(=x^2+2x\cdot\frac{1}{2}+\frac{1}{4}-\left(\frac{\sqrt{23}}{2}i\right)^2\)

\(=\left(x+\frac{1}{2}\right)^2\)\(-\left(\frac{\sqrt{23}}{2}i\right)^2\)

\(\left(x+\frac{1}{2}-\frac{\sqrt{23}}{2}i\right)\left(x+\frac{1}{2}+\frac{\sqrt[]{23}}{2}i\right)\)

Trần anh đại
Xem chi tiết
Đinh Đức Hùng
30 tháng 7 2017 lúc 10:27

\(x^3-x^2-14x+24\)

\(=x^3+4x^2-5x^2-20x+6x+24\)

\(=\left(x^3+4x^2\right)-\left(5x^2+20x\right)+\left(6x+24\right)\)

\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)

\(=\left(x^2-5x+6\right)\left(x+4\right)\)

\(=\left(x^2-2x-3x+6\right)\left(x+4\right)\)

\(=\left[x\left(x-2\right)-3\left(x-2\right)\right]\left(x+4\right)\)

\(=\left(x-2\right)\left(x-3\right)\left(x+4\right)\)

Nhật
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 11 2021 lúc 23:26

Đa thức này ko phân tích thành nhân tử được

Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 23:26

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)

gorosuke
Xem chi tiết
Viet Xuan
10 tháng 11 2021 lúc 15:06

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)