Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bế Quốc An
Xem chi tiết
Đoàn Đức Hà
25 tháng 10 2021 lúc 23:43

\(3+3^2+3^3+...+3^{2012}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(=40\left(3+...+3^{2009}\right)⋮40\)

Khách vãng lai đã xóa
Bế Quốc An
26 tháng 10 2021 lúc 9:19

rrrrr

Khách vãng lai đã xóa
Hoa Nguyễn
Xem chi tiết
VÕ THỊ HƯƠNG
29 tháng 11 2021 lúc 9:00

A=(1+3+32)+(33+34+35)+...+(32019+32020+32021)                                                  A=(1+3+32)+33.(1+3+32)+...+32019.(1+3+32)

A=13+33.13+...+32019.13

A=13.(1+33+...+32019)chia hết cho 13

=>A  chia hết cho 13

 

lê văn anh vũ
30 tháng 8 lúc 15:54

A = (1+3+3 mũ 2)+(3 mũ 3+3 mũ 4+3 mũ 5)+....+(3 mũ 2019 + 3 mũ 2020 + 3 mũ 2021)

A = 1 (1 + 3 + 3 mũ 2) + 3 mũ 9 (1+3+3 mũ 3) +...+ 3 mũ 6057 ( 1+3+3 mũ 2)

A = 1.13 +3 mũ 9.13 + ... + 3 mũ 6057 . 13

A =13.(1+3 mũ 9 +...+ 3 mũ 6057)

13 chia hết cho 13 nên A chia hết cho 13


Diêm Nguyên
Xem chi tiết
★๖ۣۜShiny ๖ۣۜStar༉★
1 tháng 12 2019 lúc 20:04

k mik nha

Số các số hạng là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

Vì 2010 chia hết cho 3 nên ta nhóm 3 số vào 1 nhóm.

Ta có: ( 3 mũ 1 + 3 mũ 2 + 3 mũ 3 ) + ( 3 mũ 4 + 3 mũ 5 + 3 mũ 6 ) +........+ ( 3 mũ 2008 + 3 mũ 2009 + 3 mũ 2010 )

3 mũ 1*(1+3+9)+3 mũ 4*(1+3+9)+........+3 mũ 2008*(1+3+9)

3 mũ 1*13 + 3 mũ 4*13  + .........+ 3 mũ 2008*13

(3 mũ 1+3 mũ 4+......+3 mũ 2008)*13

Vì 13 chia hết cho 13 nên ( 3 mũ 1+3 mũ 4+3 mũ 2008 ) chia hết cho 13 hay ( đẳng thức của đề bài cho ) chia hết cho 13.

Khách vãng lai đã xóa
Sultanate of Mawadi
5 tháng 10 2020 lúc 6:17

383+7383=

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
5 tháng 10 2020 lúc 6:41

31 + 32 + 33 + 34 + 35 + 36 + ... + 32009 + 32010

= ( 31 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 32008 + 32009 + 32010 )

= 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 32008( 1 + 3 + 32 )

= 3.13 + 34.13 + ... + 32008.13

= 13( 3 + 34 + ... + 32008 ) chia hết cho 13 ( đpcm )

Khách vãng lai đã xóa
Nijino Yume
Xem chi tiết
Trần Thanh Phương
16 tháng 8 2018 lúc 13:56

\(3+3^2+3^3+...+3^{60}\)

\(=3\cdot\left(1+3+3^2\right)+3^4\cdot\left(1+2+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)

\(=3\cdot13+3^4\cdot13+...+3^{58}\cdot13\)

\(=13\cdot\left(3+3^4+...+3^{58}\right)⋮13\left(đpcm\right)\)

minhduc
16 tháng 8 2018 lúc 14:02

     3 + 32 + .... + 360

= ( 3 + 32 + 33 ) + ...... + ( 358 + 359 + 360 )

= 3 . ( 1 + 3 + 32 ) + ..... + 358 . ( 1 + 3 + 32 )

= 3 . 13 + ...... + 358 . 13

= 13 . ( 3 + .... + 358 )

Vì 13 \(⋮\)13

=> 13 . ( 3 + .... + 358 ) \(⋮\)13

Vậy _

Nijino Yume
16 tháng 8 2018 lúc 14:09

cảm ơn

Ichigo Hoshimiya
Xem chi tiết
vynguyen_k20b
7 tháng 10 2020 lúc 22:22

Các bài này có lời giải rồi mà 

Khách vãng lai đã xóa
đồ ngốc ahihi
Xem chi tiết
Phan Thị Kim Dung
24 tháng 1 2021 lúc 15:18

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

Khách vãng lai đã xóa
Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
Hắc Phong
Xem chi tiết
Liv and Maddie
7 tháng 11 2017 lúc 21:49

Ta có :

A= 32+33+34+35+...+350+351

A= (32+33)+(34+35)+...+(350+351)

A= 1(32+33)+32(32+33)+...+348(32+33)

A= 1.36 + 32.36+...+348.36

A= 36(1+32+...+348\(⋮36\)

Vì A \(⋮36\) mà 36 \(⋮12\)=> A \(⋮12\)

Nguyễn Anh Quân
7 tháng 11 2017 lúc 21:44

A = (3^2+3^3)+(3^4+3^5)+....+(3^50+3^51)

   = 3.(3+3^2)+3^3.(3+3^2)+....+3^49.(3+3^2)

   = 3.12 + 3^3.12 + .... +3^49.12

   = 12.(3+3^3+....+3^49) chia hết cho 12 (ĐPCM)