Tính giới hạn L=\(lim_{x\rightarrow0}\frac{\left(1+x\right)^n-1}{x}\).Với n là số nguyên dương
Cho \(f\left(x\right)\) xác định trên khoảng nào đó chứa điểm 0 và \(\left|f\left(x\right)\right|\le\left|x\right|\) . Khi đó ta có:
A, \(lim_{x\rightarrow0}f\left(x\right)=0\) B, \(lim_{x\rightarrow0}f\left(x\right)=1\) C, \(lim_{x\rightarrow0}f\left(x\right)=-1\) D, Hàm số không có giới hạn tại không.
Đáp án A
Đó là nguyên lý của giới hạn kẹp
\(\left|f\left(x\right)\right|\le\left|x\right|\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}x=0\)
Tìm các giới hạn sau:
a) \(lim_{x\rightarrow0}\dfrac{tan3x}{sin5x}\)
b) \(lim_{x\rightarrow0}\dfrac{cos2x-1}{sin^23x}\)
c) \(lim_{x\rightarrow1}\dfrac{x^2-4x+3}{sin\left(x-1\right)}\)
Cho m và n là các hệ số nguyên dương \(\ge2\) và khác nhau. Tìm giới hạn sau :
\(L=\lim\limits_{x\rightarrow0}\frac{\left(1+mx\right)^n-\left(1+nx\right)^m}{x^2}\left(1\right)\)
Áp dụng công thức khai triển nhị thức Newton, ta có :
\(\left(1+mx\right)^n=1+C_n^1\left(mx\right)+C_n^2\left(mx\right)^2+.....C_n^n\left(mx\right)^n\)
\(\left(1+nx\right)^m=1+C_m^1\left(nx\right)+C_m^2\left(nx\right)+....+C_m^m\left(nx\right)^m\)
Mặt khác ta có : \(C_n^1\left(mx\right)=C_n^1\left(nx\right)=mnx\)
\(C_n^2\left(mx\right)^2=\frac{n\left(n-1\right)}{2}m^2x^2;C_m^2\left(nx\right)^2=\frac{m\left(m-1\right)}{2}n^2x^2;\)
Từ đó ta có :
\(L=\lim\limits_{x\rightarrow0}\frac{\left[\frac{n\left(n-1\right)}{2}m^2-\frac{m\left(m-1\right)}{2}n^2\right]x^2+\alpha_3x^3+\alpha_4x^4+....+\alpha_kx^k}{x^2}\left(2\right)\)
Từ (2) ta có : \(L=\lim\limits_{x\rightarrow0}\left[\frac{mn\left(n-m\right)}{2}+\alpha_3x+\alpha_4x^2+....+\alpha_kx^{k-2}\right]=\frac{mn\left(n-m\right)}{2}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Tìm các giới hạn sau:
\(\lim_{x\to\infty}\frac{1}{\sqrt[3]{n^3+1}-n}\)
\(\lim_{x\to\infty}\left(\sqrt[3]{n^3-2n^2}-n\right)\)
\(\lim_{x\to\infty}\left(\frac{1}{\sqrt[3]{n^3+1}-n}\right)=\lim_{x\to\infty}\left(\frac{1}{\frac{n^3+1-n^3}{\sqrt[3]{\left(n^3+1\right)^2}+n\cdot\sqrt[3]{n^3+1}+n^2}}\right)\)
\(=\lim_{x\to\infty}\left(\sqrt[3]{\left(n^3+1\right)^2}+n\cdot\sqrt[3]{n^3+1}+n^2\right)=\lim_{x\to\infty}\left\lbrack n^2\left(\sqrt[3]{\left(1+\frac{1}{n^3}\right)^2}+\sqrt[3]{1+\frac{1}{n^3}}+1\right)\right\rbrack=+\infty\)
\(\lim_{x\to\infty}\left(\sqrt[3]{n^3-2n^2}-n\right)\)
\(=\lim_{x\to\infty}\frac{n^3-2n^2-n^3}{\sqrt[3]{\left(n^3-2n^2\right)^2}+n\cdot\sqrt[3]{n^3-2n^2}+n^2}\)
\(=\lim_{x\to\infty}\frac{-2n^2}{n^2\cdot\left\lbrack\sqrt[3]{\left(1-\frac{2}{n}\right)^2}+\sqrt[3]{1-\frac{2}{n}}+1\right\rbrack}=\lim_{x\to\infty}\frac{-2}{\left\lbrack\sqrt[3]{\left(1-\frac{2}{n}\right)^2}+\sqrt[3]{1-\frac{2}{n}}+1\right\rbrack}\)
=-∞
Giới hạn nào sau đây tồn tại:
A, \(lim_{x\rightarrow+\infty}sin2x\) B, \(lim_{x\rightarrow+\infty}cos3x\) C, \(lim_{x\rightarrow0}sin\frac{1}{2x}\) D, \(lim_{x\rightarrow1}sin\frac{1}{2x}\)
Đáp án D đúng
Cho n là số nguyên dương \(\ge2\). Tìm giới hạn sau :
\(L=\lim\limits_{x\rightarrow1}\frac{x^n-nx+n-1}{\left(x-1\right)^2}\)
Ta có \(\frac{x^n-nx+n-1}{\left(x-1\right)^2}=\frac{\left(x^n-1\right)-n\left(x-1\right)}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(x^{n-1}+x^{n-1}+....+x+1-n\right)}{\left(x-1\right)^2}\) (1)
Từ (1) suy ra :
\(L=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+.....+x-\left(n-1\right)}{x-1}\) (2)
\(L=\lim\limits_{x\rightarrow1}\frac{\left(x^{n-1}-1\right)+\left(x^{n-2}-1\right)+.....+\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left[\left(x^{n-1}+x^{n-3}+.....+x+1\right)+.....+\left(x+1\right)+1\right]}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left[1+\left(x+1\right)+....+\left(x^{n-2}+x^{n-3}+.....+x+1\right)\right]\)
\(=1+2+....+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
Tính các giới hạn sau:\(M=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{1-cos3x}\)
\(N=\lim\limits_{X\rightarrow0}\dfrac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{\sqrt{1+x}-1}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\sqrt{1+2x}-\sqrt[3]{1+3x}}\)
Tui nghĩ cái này L'Hospital chứ giải thông thường là ko ổn :)
\(M=\lim\limits_{x\rightarrow0}\dfrac{\left(1+4x\right)^{\dfrac{1}{2}}-\left(1+6x\right)^{\dfrac{1}{3}}}{1-\cos3x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2}\left(1+4x\right)^{-\dfrac{1}{2}}.4-\dfrac{1}{3}\left(1+6x\right)^{-\dfrac{2}{3}}.6}{3.\sin3x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{1}{4}.4\left(1+4x\right)^{-\dfrac{3}{2}}.4+\dfrac{2}{9}.6.6\left(1+6x\right)^{-\dfrac{5}{3}}}{3.3.\cos3x}\)
Giờ thay x vô là được
\(N=\lim\limits_{x\rightarrow0}\dfrac{\left(1+ax\right)^{\dfrac{1}{m}}-\left(1+bx\right)^{\dfrac{1}{n}}}{\left(1+x\right)^{\dfrac{1}{2}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{m}.\left(1+ax\right)^{\dfrac{1}{m}-1}.a-\dfrac{1}{n}\left(1+bx\right)^{\dfrac{1}{n}-1}.b}{\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}}=\dfrac{\dfrac{a}{m}-\dfrac{b}{n}}{\dfrac{1}{2}}\)
\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\left(1+2x\right)^{\dfrac{1}{2}}-\left(1+3x\right)^{\dfrac{1}{3}}}=\lim\limits_{x\rightarrow0}\dfrac{n\left(1+mx\right)^{n-1}.m-m\left(1+nx\right)^{m-1}.n}{\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{1}{2}}.2-\dfrac{1}{3}\left(1+3x\right)^{-\dfrac{2}{3}}.3}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(n-1\right)\left(1+mx\right)^{n-2}.m-m\left(m-1\right)\left(1+nx\right)^{m-2}.n}{-\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{3}{2}}.2+\dfrac{2}{9}.3.3\left(1+3x\right)^{-\dfrac{5}{3}}}=....\left(thay-x-vo-la-duoc\right)\)