e)2-2.2x+2.2x=9.26 f)3-22.34.3x=37
2sin^2.2x-3cos2x+6sin^2-9=0. Giúp e giải pt này vs ạ
Đề là: \(2sin^22x-3cos2x+6sin^2x-9=0\) đúng không nhỉ?
\(\Leftrightarrow2\left(1-cos^22x\right)-3cos2x+3\left(1-cos2x\right)-9=0\)
\(\Leftrightarrow-2cos^22x-6cos2x-4=0\)
\(\Leftrightarrow cos^22x+3cos2x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow...\)
Giải pt
2sin^2.2x-3cos2x+6sin^2-9=0
2.2x = 28
2x=28:2
2x=27
x=7
Vậy x = 7
2.2x =28
C1
\(2.2^x=2^8\)
\(2^x=2^7\)
\(\Rightarrow x=7\)
C2:
\(2.2^x=2^8\)
\(\Rightarrow1+x=8\)
\(\Rightarrow x=7\)
a)3x+9=2x-11
b)2x-3 phần 5 -2=2-x phần 4
c)2x+3.3+x^2=2.2x+3
a: =>3x-2x=-11-9
=>x=-20
c: \(\Leftrightarrow\left(2x+3\right)\left(x^2+3\right)=2\left(2x+3\right)\)
=>2x+3=0
hay x=-3/2
5x+1-5x=2.2x+8.2x
\(5^{x+1}-5^x=2.2^x+8.2^x\\ \Leftrightarrow5^x.5-5^x=2.2^x+8.2^x\\ \Leftrightarrow5^x\left(5-1\right)=2^x\left(2+8\right)\\ \Leftrightarrow5^x.4=2^x.10\\ \Leftrightarrow5^x:2^x=\dfrac{5}{2}\\ \Leftrightarrow\left(\dfrac{5}{2}\right)^x=\dfrac{5}{2}\\ \Rightarrow x=1\)
a)3x+9=2x-11
b)2x-3 phần 5 -2=2-x phần 4
c)2x+3.3+x^2=2.2x+3
có điều kiện xác định
a: 3x+9=2x-11
=>3x-2x=-11-9
=>x=-20
b: \(\dfrac{2x-3}{5}-2=\dfrac{2-x}{4}\)
=>4(2x-3)-20=5(2-x)
=>8x-12-20=10-5x
=>8x-32=10-5x
=>13x=42
hay x=42/13
Bài 2:
a)|x - 2/3|- 5/4= 0
b)1,35 /0,2 = 1,25 /0,1x
c)3cân bậc x - 5cân bậc x =-6
d)3x+2.2x-1=363
d: Ta có: \(3^{x+2}\cdot2^{x-1}=36^3\)
\(\Leftrightarrow3^x\cdot9\cdot2^x\cdot\dfrac{1}{2}=6^6\)
\(\Leftrightarrow6^x=6^6:\dfrac{9}{2}=10368\)
=> Đề sai rồi bạn
1/2.2x+4.2x=9.2x
1/2.2x+4.2x=9.2x
2x.(1/2+4)=9.2x
2x.9/2=9.2x
2x:2x=9:9/2
x=2
vậy x=2
Bài 2:
a)|x - 2/3|- 5/4= 0
b)1,35 /0,2 = 1,25 /0,1x
c)3cân bậc x - 5cân bậc x =-6
d)3x+2.2x-1=363
giúp mình với!
\(a,\Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{5}{4}\\\dfrac{2}{3}-x=\dfrac{5}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{23}{12}\\x=-\dfrac{7}{12}\end{matrix}\right.\\ b,\Rightarrow0,1x\cdot1,35=0,2\cdot1,25=0,25\\ \Rightarrow0,135x=0,25\Rightarrow x=\dfrac{50}{27}\\ c,ĐK:x\ge0\\ PT\Leftrightarrow-2\sqrt{x}=-6\Leftrightarrow x=9\left(tm\right)\\ d,\Leftrightarrow3^{x+2}\cdot2^{x-1}=\left(3^2\cdot2^2\right)^3=3^6\cdot2^6\\ \Leftrightarrow\left\{{}\begin{matrix}x+2=6\\x-1=6\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
a) I\(x - \dfrac{2}{3} \)I \(- \dfrac{5}{4} = 0\)
I\(x - \dfrac{2}{3} \)I = 0 +\(\dfrac{5}{4} \)
I\(x - \dfrac{2}{3} \)I = \(\dfrac{5}{4} \)
I\(x - \dfrac{2}{3} \)I = \(\begin{cases} \dfrac{5}{4} + \dfrac{2}{3}\\ \dfrac{-5}{4} + \dfrac{2}{3}\\ \end{cases} \)
\(x \) = \(\begin{cases} \dfrac{23}{12} \\ \dfrac{-7}{12} \end{cases} \)
b) \(\dfrac{1,35}{0,2} = \dfrac{1,25}{0,1x}\)
1,35 . 0,1x = 1,25 . 0,2
1,35 . 0,1x = 0,25
0,1x = 0,25 : 1,35
\(\dfrac{1}{10}\)x = \(\dfrac{5}{27}\)
x = \(\dfrac{5}{27} : \dfrac{1}{10}\)
x = \(\dfrac{5}{27} . \dfrac{10}{1}\)
x = \(\dfrac{50}{27}\)