Giải và vẽ hình giúp mình và giải theo cách giải của lớp 8 mình cảm ơn ạ !!!
Mong mn giúp mình ! Mình cảm ơn trước ạ:<
Làm theo cách của lớp 9,giải theo cách cơ bản


5.
\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\)
Pt có 2 nghiệm pb khi \(\left(m-2\right)^2>0\Rightarrow m\ne2\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=x_1+x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=x_1+x_2\)
\(\Leftrightarrow m^2-2\left(m-1\right)=m\)
\(\Leftrightarrow m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\left(loại\right)\end{matrix}\right.\)
1.
\(\Delta=9+4m>0\Rightarrow m>-\dfrac{9}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-m\end{matrix}\right.\)
\(5x_1+5x_2=1-\left(x_1x_2\right)^2\)
\(\Leftrightarrow5\left(x_1+x_2\right)=1-\left(x_1x_2\right)^2\)
\(\Leftrightarrow5.\left(-3\right)=1-\left(-m\right)^2\)
\(\Leftrightarrow m^2=16\Rightarrow\left[{}\begin{matrix}m=4\\m=-4< -\dfrac{9}{4}\left(loại\right)\end{matrix}\right.\)
2.
\(\Delta=\left(2m+1\right)^2-4\left(m^2+1\right)=4m-3>0\Rightarrow m>\dfrac{3}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+1\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=13\)
\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=13\)
\(\Leftrightarrow x_1^2+x_2^2+2\left(x_1+x_2\right)=11\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=11\)
\(\Leftrightarrow\left(2m+1\right)^2-2\left(m^2+1\right)+2\left(2m+1\right)=11\)
\(\Leftrightarrow2m^2+8m-10=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-5< \dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)
Giúp mình giải bài có dấu sao theo cách của lớp 5 với ạ. Mình cảm ơn nhiều.

\(\dfrac{S_{AOD}}{S_{DOC}}=\dfrac{10}{20}=\dfrac{1}{2}\)
=>\(AO=\dfrac{1}{2}CO\)
Vì ABCD là hình thang có hai đáy là AB và CD
và AC cắt BD tại O
nên \(S_{AOD}=S_{BOC}\)
=>\(S_{BOC}=10\left(cm^2\right)\)
\(AO=\dfrac{1}{2}OC\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot S_{BOC}=5\left(cm^2\right)\)
\(S_{ABCD}=S_{ABO}+S_{BOC}+S_{DOC}+S_{AOD}\)
\(=5+10+20+10=45\left(cm^2\right)\)
ai biết giải này thì giải giúp mình nhé,làm theo cách lớp 9 nhé ! Cảm ơn ạ.

a: ΔAMN vuông tại A
mà AI là đường trung tuyến
nên AI=IM=IN=MN/2
=>I là tâm đường tròn ngoại tiếp ΔAMN
b: Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Giúp mình giải bài 3 theo cách của lớp 5 với ạ. Cảm ơn mọi người nhiều.
Bài 3:
Nếu đáy lớn được tăng thêm 5 cm thì diện tích sẽ tăng một phần bằng 5 x chiều cao : 2
Vậy chiều cao của hình thang là:
$20\times 2:5=2$ (m)
Diện tích hình thang ban đầu là:
$50\times 2:2=50$ (m2)
Giải và vẽ hình câu 37 giúp mình với ạ..Mình cảm ơn

Không ai vẽ hình khi làm bài mặt cầu Oxyz đâu bạn, chỉ cần đại số hóa nó là được.
Gọi I là tâm mặt cầu, do mặt cầu tiếp xúc (Q) tại H nên \(IH\perp\left(Q\right)\)
\(\Rightarrow\) Đường thẳng IH nhận vtpt của (Q) là 1 vtcp
\(\Rightarrow\) IH nhận (1;1;-1) là 1 vtcp
Phương trình IH: \(\left\{{}\begin{matrix}x=1+t\\y=-1+t\\z=-t\end{matrix}\right.\)
I vừa thuộc IH vừa thuộc (P) nên là giao điểm của IH và (P)
\(\Rightarrow\) Tọa độ I thỏa mãn:
\(2\left(1+t\right)+\left(-1+t\right)+\left(-t\right)-3=0\)
\(\Rightarrow t=1\Rightarrow I\left(2;0;-1\right)\)
\(\Rightarrow\overrightarrow{IH}=\left(-1;-1;1\right)\Rightarrow R=IH=\sqrt{3}\)
Phương trình (S):
\(\left(x-2\right)^2+y^2+\left(z+1\right)^2=3\)
Giúp mình vẽ hình và giải bài được không ạ? Mai mình ktra e nhưng đọc bài vẫn ko vẽ được hình nên mình cần lấy bài này làm mẫu cho mấy bài tiếp theo. Mình cảm ơn ạ💜💜💜
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>\(\widehat{AMB}=90^0\)
b: Xét ΔOMC vuông tại M có MH là đường cao
nên \(HC\cdot HO=HM^2\left(1\right)\)
Xét ΔMAB vuông tại M có MH là đường cao
nên \(HA\cdot HB=HM^2\left(2\right)\)
Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)
c: Xét tứ giác AMBQ có
O là trung điểm của AB và MQ
Do đó: AMBQ là hình bình hành
Hình bình hành AMBQ có AB=MQ
nên AMBQ là hình bình hành
giải giúp mình vs ạ , trình bày chi tiết nha ( theo lớp 8). Cảm ơn nhìu ạ

\(\dfrac{x+2}{x-3}< 0\)vì \(x+2>x-3\)
\(\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\)<=> -2 < x < 3

giải, trình bày rõ ràng đầy đủ và vẽ hình giúp mình với ạ mình cảm ơn
Bài 1:
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:
\(AF\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
Giải giúp mình bài này trong tối nay : vẽ cả hình và giải theo cách của lớp 9 kì I nhé.Tớ cảm ơn,hứa sẽ tick!
Cho nửa đường tròn tâm O,đường kính MN.Kẻ tiếp tuyến Mx,Ny.Lấy A bất kì thuộc nửa đường tròn,qua A kẻ tiếp tuyến với đường tròn tâm O cắt Mx và Ny tại B và C.
a) C/m 4 điểm A,B,N,O cùng thuộc 1 đường tròn
b) C/m OA^2 = MB .MC
c) MA cắt OB tại H,NA cắt OC tại K.C/m AHOK là hình chữ nhật
d) Kẻ AE vuông góc MN cắt BN tại F.C/m F là trung điểm AE.
a: Sửa đề: A,B,M,O
Xét tứ giác BMOA có
\(\widehat{BMO}+\widehat{BAO}=90^0+90^0=180^0\)
=>BMOA là tứ giác nội tiếp
=>B,M,O,A cùng thuộc một đường tròn
b: Xét (O) có
BA,BM là tiếp tuyến
Do đó: BA=BM và OB là phân giác của \(\widehat{AOM}\)
=>\(\widehat{AOM}=2\cdot\widehat{AOB}\)
Xét (O) có
CA,CN là tiếp tuyến
Do đó: CA=CN và OC là phân giác của \(\widehat{AON}\)
=>\(\widehat{AON}=2\cdot\widehat{AOC}\)
\(\widehat{AON}+\widehat{AOM}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{AOC}+2\cdot\widehat{AOB}=180^0\)
=>\(2\cdot\widehat{BOC}=180^0\)
=>\(\widehat{BOC}=90^0\)
Xét ΔOBC vuông tại O có OA là đường cao
nên \(OA^2=AB\cdot AC\)
mà AB=BM và AC=CN
nên \(OA^2=BM\cdot CN\)
c: BA=BM
=>B nằm trên đường trung trực của AM(1)
OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra BO là đường trung trực của AM
=>BO\(\perp\)AM tại trung điểm của AM
=>BO\(\perp\)AM tại H và H là trung điểm của AM
CA=CN
=>C nằm trên đường trung trực của AN(3)
OA=ON
=>O nằm trên đường trung trực của AN(4)
Từ (3) và (4) suy ra CO là đường trung trực của AN
=>CO\(\perp\)AN tại trung điểm của AN
=>CO\(\perp\)AN tại K và K là trung điểm của AN
Xét tứ giác AHOK có \(\widehat{AHO}=\widehat{AKO}=\widehat{HOK}=90^0\)
nên AHOK là hình chữ nhật