Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Mỹ Hạnh
Xem chi tiết
Nguyễn Diệu Anh
Xem chi tiết
Kistune
Xem chi tiết
ミ★ήɠọς τɾίếτ★彡
27 tháng 8 2021 lúc 14:23

ta có \(a-b|P\left(a\right)-P\left(b\right).màP\left(b\right)=-1\) nên suy ra \(\left[{}\begin{matrix}a-b=1\\a-b=-1\end{matrix}\right.\)

tương tự ta cũng được \(\left[{}\begin{matrix}c-b=1\\c-b=-1\end{matrix}\right.\) rõ ràng a≠c(do P(a)≠P(a)) nên a-b≠c-b

từ đây ta được

\(\left[{}\begin{matrix}a-b=1\\c-b=-1\end{matrix}\right.V\left[{}\begin{matrix}a-b=-1\\c-b=1\end{matrix}\right.\)

suy ra \(a+c=2b\) 

vậy ta được đpcm

Nguyễn Ngọc Ánh
Xem chi tiết
Trịnh Xuân Hóa
15 tháng 2 2018 lúc 16:05

 a+3c +a+2b = 17 

=>2a +2b +3c = 17

=>2.(a+b)+3c=17

=>a+b+3c/2=17/2

=> N= a+b-c-17/2=a+b-c-a-b -3c/2=-c-3c/2

=> N là các số  không âm

le thuy linh
Xem chi tiết
Bùi Huy Hiển
Xem chi tiết
Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

vũ khánh ly
Xem chi tiết
Nguyễn Phương Uyên
23 tháng 5 2018 lúc 20:16

a, n(n+1)(n+2)

nhận xét : 

n; n+1; n+2 là 3 số tự nhiên liên tiếp

=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3             (1)

ƯCLN(2;3) = 1   (2)

(1)(2) => n(n+1)(n+2) \(⋮\) 6

b, 3a + 5b \(⋮\) 8

=> 5(3a + 5b) \(⋮\) 8

=> 15a + 25b \(⋮\) 8

3(5a + 3b) = 15a + 9b

xét hiệu : 

(15a + 25b) - (15a + 9b)

= 15a + 25b - 15a - 9b

= (15a - 15a) + (25b - 9b)

= 0 + 16b

= 16b và (3;5) = 1

=> 5a + 3b \(⋮\) 8

c, làm tương tự câu b

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Akai Haruma
13 tháng 4 2021 lúc 14:27

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$