Cho P= 9/(sqrt(x) + 2) (x>0,x ne4) Tìm x \in \mathbb{Z} để P nguyên,
Q = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)với đk x \(\ge0,x\ne9,x\ne4\)
1. rút gọn Q
2. tìm x để Q < 1
3. tìm x \(\in\)Z để Q\(\in\)Z
Cho M=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\) \(\left(x\ge0;x\ne4;x\ne9\right)\)
a, Rút gọn M
b, Tính M khi x=\(11-6\sqrt{2}\)
c, Tìm x để M<1
d, Tìm \(x\in Z\) để M\(\in Z\)
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)
tìm x nguyên để \(P=\dfrac{1}{\sqrt{x}+2}>\dfrac{1}{4}\left(x>0;x\ne4\right)\)
P>1/4
=>\(P-\dfrac{1}{4}>0\)
=>\(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{4}>0\)
=>\(\dfrac{4-\sqrt{x}-2}{4\left(\sqrt{x}+2\right)}>0\)
=>\(2-\sqrt{x}>0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
Kết hợp ĐKXĐ, ta được: 0<x<4
mà x nguyên
nên \(x\in\left\{1;2;3\right\}\)
Cho \(A=\dfrac{\sqrt{x}-3}{2}\). Tìm \(x\in\mathbb{Z}\) và \(x< 30\) để A có giá trị nguyên ?
\(A=\dfrac{\sqrt{x}-3}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2.\)
Suy ra \(x\) là số chính phương lẻ.
Vì \(x< 30\) nên \(x\in\left\{1^2;3^2;5^2\right\}\)hay \(x\in\left\{1;9;25\right\}.\)
Cho \(B=\dfrac{5}{\sqrt{x}-1}\). Tìm \(x\in\mathbb{Z}\) để B có giá trị nguyên ?
Để B có giá trị nguyên thì 5 \(⋮\sqrt{x}-1\) \(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)\) \(\Rightarrow\sqrt{x}-1\in\left\{1;-1;5;-5\right\}\)
Ta có bảng:
| \(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
| \(x\) | 4 | 0 | 36 | 16 |
Vậy \(x\in\left\{4;0;36;16\right\}\)
Để phân số \(B=\dfrac{5}{\sqrt{x}-1}\) có giá trị nguyên thì: \(5⋮\sqrt{x}-1\\ \Rightarrow\sqrt{x}-1\inƯ\left(5\right)\\ \Rightarrow\sqrt{x}-1\in\left\{\pm1;\pm5\right\}\)
Ta lập bảng sau:
| \(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
| \(x\) | 4 | 0 | 36 | 16 |
Vậy \(x\in\left\{4;0;36;16\right\}\).
cho Q= \(\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3\sqrt{x}}vớix\ge0,x\ne4,x\ne9\)
a) rút gọn Q
b) tìm x để Q=2
c)tìm x để Q có gí trị nguyên
a: \(Q=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Tìm số nguyên tố `x` để |P| + P = 0 biết \(P=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\) \(\left(x\ge0;x\ne4;x\ne9\right)\)
|P|+P=0
=>|P|=-P
=>P<=0
=>\(\dfrac{\sqrt{x}-3}{\sqrt{x}+3}< =0\)
=>\(\sqrt{x}-3< =0\)
=>\(\sqrt{x}< =3\)
=>0<=x<=9
kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< =x< 9\\x< >4\end{matrix}\right.\)
mà x là số nguyên tố
nên \(x\in\left\{2;3;5;7\right\}\)
Cho: \(A=\dfrac{x+9}{6\sqrt{x}}\) (ĐKXĐ:x>0;\(x\ne4\)).Tìm m để tồn tại x sao cho A=m
Cho \(P=\frac{2x}{\sqrt{x}-2}\)
Với \(x\ge0;x\ne4\) tìm \(x\in Z\) để \(P\in Z\)
Bạn ơi giải giúp mik bài toán vừa ra đc hk
Đặt câu hỏi xong thì nghĩ ra cách làm lun :v
Đặt \(t=\sqrt{x}\left(t\ge0;t\in Z\right)\)
Khi đó: \(P=\frac{2t^2}{t-2}=\frac{2\left(t^2-4\right)+8}{t-2}\)
\(=2\left(t+2\right)+\frac{8}{t-2}\)
\(\Rightarrow P\in Z\Leftrightarrow\frac{8}{t-2}\in Z\)
<=> t-2 \(\in\)Ư(8)
Vì t\(\ge0\Rightarrow t-2\ge-2\)
\(\Rightarrow t-2\in\){-2;-1;1;2;4;8}
=> t\(\in\){0;1;3;4;6;10}
Thay t = \(\sqrt{x}\)rồi đối chiếu đ/k là xong :)
Bài 1: Cho \(A=\left(\dfrac{x-4}{\sqrt{x}-2}+\dfrac{x\sqrt{x}-8}{4-x}\right):\left[\dfrac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\right]\)với \(x\ge0\); \(x\ne4\)
a, Rút gọn A
b, CMR: \(A< 1\) với \(x\ge0\); \(x\ne4\)
c, Tìm x để A nguyên
a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)
b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)
\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)
=>A<1
c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)
=>A>=0 với mọi x thỏa mãn ĐKXĐ
mà A<1
nên 0<=A<1
=>Để A nguyên thì A=0
=>x=0