Tìm x, y thuộc N, biết xy + 2y - x - y = 5
Tìm x, y thuộc N
biết xy + 2y - x -y = 5
xy + 2y - x -y = 5
<=> xy + y - x = 5
<=> xy + y - x -1 = 5 -1
<=> (xy + y) - (x +1)= 4
<=> y (x+1) - (x+1) = 4
<=> (x +1) (y -1) = 4
ta có 4 = 4.1 hoặc 4 = 2.2
x+1 | 1 | 4 | 2 |
x | 0 | 3 | 1 |
y-1 | 4 | 1 | 2 |
y | 5 | 2 | 3 |
Vậy các cặp x, y thỏa mãn là:
x = 0; y= 5
x = 3; y = 2
x = 1; y = 3
Tìm x,y thuộc N biết: xy+ x+ 2y=5
=> (y+1)x + 2y = 5
=> (y+1)x+2y+2=7
=>(y+1)x+2(y+1)=7
=>(y+1)(x+2) = 7
Do, x,y thuộc N nên ta xét:
TH1: y+1=1, x+2=7=> y=0, x=5
TH2: y+1=7, x+2=1=> x=6,x=-1(loại)
vậy y=0 và x=5
Ta có :
\(xy+x+2y=5\)
\(\Rightarrow\left(xy+2y\right)+x+2=7\)
\(\Rightarrow y\left(x+2\right)+\left(x+2\right)=7\)
\(\Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Do \(x;y\in N\)
\(\Rightarrow x+2;y+1\in N\)
Mà \(x+2;y+1\inƯ\left(7\right)\)
\(\Rightarrow x+2;y+1\in\left\{1;7\right\}\)
Ta có bảng sau :
\(x+2\) | \(1\) | \(7\) |
\(y+1\) | \(7\) | \(1\) |
\(x\) | \(-1\left(L\right)\) | \(5\) |
\(y\) | \(6\) | \(0\) |
Vậy \(x=5;y=0\)
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x, y thuộc N biết
a, ( x - 5 ) (2y + 1 ) = 12
b, x + 6y + xy = 5
tìm x,y thuộc Z , biết
xy+2y-x=5+2y2
Đề bài : Tìm x , y thuộc Z , biết :a) xy + x + 2y = 5b) xy - 3x - y = 0c)xy +2x +2y = -16
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)