cho tam giác cân ABC có A=120 độ và AB=AC=a. Trên cạnh BC lấy M sao cho BM=2BC/5. Tính độ dài AM
Cho tam giác ABC có góc A=120°, AB= 1, AC=2
a) Tính diện tích tam giác ABC
b) Trên tia CA, lấy điểm M sao cho BM=2. Tính độ dài AM
Tam giác ABC vuông tại A, có AB = AC = a. Điểm M nằm trên cạnh BC sao cho \(BM=\dfrac{BC}{3}\) . Tính độ dài AM
Để tính độ dài AM, ta có thể sử dụng định lý Pythagoras. Định lý này cho biết rằng trong một tam giác vuông, bình phương của độ dài cạnh huyền (đường chéo dài nhất) bằng tổng bình phương của độ dài hai cạnh góc vuông.
Trong trường hợp này, ta có AB = AC = a và BM = BC/√3. Để tìm độ dài AM, ta cần tìm độ dài cạnh còn lại của tam giác ABC.
Áp dụng định lý Pythagoras, ta có: AM^2 + BM^2 = AB^2
Thay các giá trị đã biết vào, ta có: AM^2 + (BC/√3)^2 = a^2
Giải phương trình trên, ta có thể tính được độ dài AM.
Cho hình tam giác ABC vuông góc tại a biết độ dài cạnh AB bằng 46 cm và AC = 2/5 AB a Tính diện tích tam giác ABC b cạnh trên cạnh ac lấy điểm M cho sao AM = 1/4 AC trên cạnh BC lấy điểm N sao cho BN = NC tính diện tích hình tam giác AMN?
Cho tam giác abc có ab= 3cm, ac= 4cm, bc= 5cm. trên cạnh ab lấy điểm m sao cho bm= 2,5 cm; trên cạnh bc lấy điểm n sao cho bn= 1,5cm. a chứng minh tam giác nbm đồng dạng với tam giác abc. b tính độ dài đoạn thẳng nm
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
Xét ΔNBM và ΔABC có
BN/BA=BM/BC
góc B chung
=>ΔNBM đồng dạng với ΔABC
b: ΔNBM đồng dạng với ΔABC
=>NM/AC=BM/BC
=>NM/4=2,5/5=1/2
=>NM=2cm
Cho tam giác ABC, có AB = 8cm, AC = 10cm, BC = 12cm. Trên cạnh AB lấy điểm M và trên cạnh AC lấy điểm N sao cho AM = 6cm, AN = 7.5cm.
a)Chứng minh MN // BC
b)Tính độ dài đoạn thẳng MN
a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)
=> MN // BC (Ta lét đảo)
b, Vì MN // BC
Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)
Tam giác ABC có độ dài các cạnh AB = 24cm, AC = 30cm, BC = 36cm. Trên cạnh AB lấy điểm M sao cho AM =20cm, trên cạnh AC lấy điểm N sao cho AN =16 cm. Chứng minh tam giác ANM đồng dạng với tam giác ABC và tính MN
Xét ΔANM và ΔABC có
AN/AB=AM/AC
\(\widehat{NAM}\) chung
Do đó: ΔANM\(\sim\)ΔABC
Câu 1. Cho tam giác ABC có góc B =90 độ , vẽ trung tuyến AM . Trên tia đối của tia AM lấy điểm E sao cho ME=AM . C/m rằng :
a. Tam giác ABM=tam giác ECM
b. AC>CE
c. Góc BAM > góc MAC
Câu 2. Cho tam giác ABC cân ở A có AB=AC=17cm ; BC=16cm .Kẻ trung tuyến AM .C/m rằng :
a.AM vuông góc BC
b.Tính độ dài AM
Câu 3. Cho tam giác nhọn nhọn ABC , hai đường cao BM,CN . Trên tia đối của tia BM lấy điểm D sao cho BD =AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB . C/m :
a. góc ACE = góc ABD
b. Tam giác ACE = tam giác DBA
c. Tam giác AED là tam giác vuông cân
Cho tam giác ABC có AB=5cm; AC=7cm; BC=10cm
Trên cạnh AB lấy điểm M sao cho AM= 2,5cm
Trên cạnh AC lấy điểm N sao cho AN= 3,5cm
a) tính độ dài đoạn thẳng MN?
b) Chứng minh tam giác AMN đồng dạng với tam giác ABC
c) Đường p/g trong của góc BAC cắt cạnh BC tại D. Tính độ dài của DB và DC
Cho tam giác ABC nhọn có AB<AC. Trên cạnh AC lấy điểm M sao cho góc ABM = góc ACB
a. C/M: tam giác AMB đồng dạng tam giác ABC
b. Biết AB = 9cm, AC = 15cm. Tính độ dài đoạn thẳng AM?
c. Vẽ phân giác AD của góc BAC (D thuộc BC) cắt BM tại I. C/M : tam giác BID cân