Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
K. Taehiong
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
meme
27 tháng 8 2023 lúc 15:00

Để tính độ dài AM, ta có thể sử dụng định lý Pythagoras. Định lý này cho biết rằng trong một tam giác vuông, bình phương của độ dài cạnh huyền (đường chéo dài nhất) bằng tổng bình phương của độ dài hai cạnh góc vuông.

Trong trường hợp này, ta có AB = AC = a và BM = BC/√3. Để tìm độ dài AM, ta cần tìm độ dài cạnh còn lại của tam giác ABC.

Áp dụng định lý Pythagoras, ta có: AM^2 + BM^2 = AB^2

Thay các giá trị đã biết vào, ta có: AM^2 + (BC/√3)^2 = a^2

Giải phương trình trên, ta có thể tính được độ dài AM.

Huy Dũng Trần
Xem chi tiết
KaiTy TV
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2023 lúc 10:09

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

Xét ΔNBM và ΔABC có

BN/BA=BM/BC

góc B chung

=>ΔNBM đồng dạng với ΔABC

b: ΔNBM đồng dạng với ΔABC

=>NM/AC=BM/BC

=>NM/4=2,5/5=1/2

=>NM=2cm

Minh Hạo
Xem chi tiết
Nguyễn Huy Tú
8 tháng 3 2022 lúc 10:17

a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)

=> MN // BC (Ta lét đảo) 

b, Vì MN // BC 

Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)

Trần Lê Quang Tiến
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 21:57

Xét ΔANM và ΔABC có

AN/AB=AM/AC

\(\widehat{NAM}\) chung

Do đó: ΔANM\(\sim\)ΔABC

Legend
Xem chi tiết
Legend
13 tháng 4 2019 lúc 19:25

help me > _ <

vŨ THỊ THU NGỌC
Xem chi tiết
Lê Trọng Thế
Xem chi tiết