xét tính bị chặn của dãy số (un) với un=\(\dfrac{n^2+1}{2n^2-3}\)
Xét tính bị chặn của dãy số sau:
a) un=\(\dfrac{1}{2n^2-3}\)
b) un=\(\dfrac{1}{2n^2-1}\)
a: \(2n^2-3>=-3\)
\(\Leftrightarrow u_n=\dfrac{1}{2n^2-3}< =-\dfrac{1}{3}\)
=>Dãy số bị chặn trên ở -1/3
b: \(2n^2-1>=-1\)
=>\(u_n=\dfrac{1}{2n^2-1}< =\dfrac{1}{-1}=-1\)
=>Dãy số bị chặn trên ở -1
Bài 1: Xét tính tăng giảm của các dãy số (Un) với
a)\(Un=\dfrac{2^n-1}{2^n+1}\) b)\(Un=\left(-1\right)^n.n\)
Bài 2: Xét tính bị chặn của
\(Un=\sqrt[3]{n}-\sqrt[3]{n+1}\)
Cho dãy số (Un), với un = 1/1×2+ 1/2×3 + 1/3×4 +...+ 1/n(n+1). Xét tính tăng, giảm và bị chặn của dãy số.
\(u_n=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}< 1\)
=>Hàm số bị chặn trên tại \(u_n=1\)
\(n+1>=1\)
=>\(\dfrac{1}{n+1}< =1\)
=>\(-\dfrac{1}{n+1}>=-1\)
=>\(1-\dfrac{1}{n+1}>=-1+1=0\)
=>Hàm số bị chặn dưới tại 0
\(u_n=1-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)
\(\dfrac{u_n}{u_{n+1}}=\dfrac{n}{n+1}:\dfrac{n+1}{n+2}=\dfrac{n^2+2n}{n^2+2n+1}< 1\)
=>(un) là dãy số tăng
Xét tính tăng, giảm và bị chặn của dãy số u n , biết: u n = 2 n - 13 3 n - 2
A. Dãy số tăng, bị chặn
B. Dãy số giảm, bị chặn
C. Dãy số không tăng không giảm, không bị chặn
D. Cả A, B, C đều sai
Xét tính tăng, giảm và bị chặn của dãy số ( u n ) , biết: u n = 2 n − 13 3 n − 2
A. Dãy số tăng, bị chặn
B. Dãy số giảm, bị chặn
C. Dãy số không tăng không giảm, không bị chặn
D. Cả A, B, C đều sai
Ta có: u n = 2 ( n + 1 ) − 13 3 ( n + 1 ) − 2 = 2 n − 11 3 n + 1
Xét hiệu:
u n + 1 − u n = 2 n − 11 3 n + 1 − 2 n − 13 3 n − 2 = ( 2 n − 11 ) . ( 3 n − 2 ) − ( 2 n − 13 ) . ( 3 n + 1 ) ( 3 n + 1 ) ( 3 n − 2 ) = 6 n 2 − 4 n − 33 n + 22 − ( 6 n 2 + 2 n − 39 n − 13 ) ( 3 n + 1 ) . ( 3 n − 2 ) = 35 ( 3 n + 1 ) ( 3 n − 2 ) > 0
với mọi n ≥ 1 .
Suy ra u n + 1 > u n ∀ n ≥ 1 ⇒ dãy ( u n ) là dãy tăng.
Mặt khác: u n = 2 3 − 35 3 ( 3 n − 2 ) ⇒ u n < 2 3 ∀ n ≥ 1
Suy ra u n bị chặn trên
∀ n ≥ 1 : 3 n − 2 ≥ 1 ⇒ 35 3 ( 3 n − 2 ) ≤ 35 3.1 = 35 3 ⇒ u n ≥ 2 3 − 35 3 = − 11
Nên ( u n ) bị chặn dưới.
Vậy dãy ( u n ) là dãy bị chặn.
Chọn đáp án A.
Xét tính tăng, giảm và bị chặn của dãy số ( u n ) , biết: u n = 2 n − 13 3 n − 2
A. Dãy số tăng, bị chặn
B. Dãy số giảm, bị chặn
C. Dãy số không tăng không giảm, không bị chặn
D. Cả A, B, C đều sai
Ta có: u n + 1 − u n = 2 n − 11 3 n + 1 − 2 n − 13 3 n − 2 = 35 ( 3 n + 1 ) ( 3 n − 2 ) > 0 với mọi n ≥ 1
Suy ra u n + 1 > u n ∀ n ≥ 1 ⇒ dãy ( u n ) là dãy tăng.
Mặt khác: u n = 2 3 − 35 3 ( 3 n − 2 ) ⇒ − 11 ≤ u n < 2 3 ∀ n ≥ 1
Vậy dãy ( u n ) là dãy bị chặn.
Chọn đáp án A
Chứng minh rằng: dãy số (Un) với \(U_n=\dfrac{n^2+1}{2n^2-3}\) là một dãy số bị chặn
\(u_n=\dfrac{n^2+1}{2n^2-3}\)
\(=\dfrac{1}{2}\cdot\dfrac{n^2+1}{n^2-1,5}\)
\(=\dfrac{1}{2}\left(\dfrac{n^2-1,5+2,5}{n^2-1,5}\right)=\dfrac{1}{2}\left(1+\dfrac{2.5}{n^2-1,5}\right)< \dfrac{1}{2}\)
=>(Un) là dãy số bị chặn
Xét tính tăng giảm và bị chặn của dãy số sau: (un): un = n3 + 2n + 1
A. Tăng, bị chặn
B. Giảm, bị chặn
C. Tăng, chặn dưới
D. Giảm, chặn trên
Chọn C.
Ta có: un+1 – un = (n + 1)3 + 2(n + 1) – n3 – 2n = 3n2 + 3n + 3
Mặt khác: un > 1 và khi n càng lớn thì un càng lớn.
Vậy dãy (un) là dãy tăng và bị chặn dưới.
Xét tính tăng hay giảm và bị chặn của dãy số : u n = 2 n − 1 n + 3 ; n ∈ N *
A. Dãy số giảm, bị chặn trên
B. Dãy số tăng, bị chặn dưới
C. Dãy số tăng, bị chặn.
D. Dãy số giảm, bị chặn dưới.
Xét hiệu: u n + 1 − u n = 2 n + 1 n + 4 − 2 n − 1 n + 3
= 2 n 2 + 7 n + 3 − 2 n 2 − 7 n + 4 n + 4 n + 3 = 7 n + 4 n + 3 > 0 ; ∀ n ∈ N *
Vậy: ( u n ) là dãy số tăng.
Ta có u n = 2 n − 1 n + 3 = 2 ( n + 3 ) − 7 n + 3 = 2 − 7 n + 3
Suy ra: ∀ n ∈ ℕ * , u n < 2 nên ( u n ) bị chặn trên.
Vì ( u n ) là dãy số tăng ∀ n ∈ ℕ * , u 1 = 1 4 ≤ u n nên ( u n ) bị chặn dưới. Vậy ( u n ) bị chặn.
Chọn đáp án C.
Xét tính tăng, giảm, bị chặn của dãy số (un) với un = 1/n+1
\(u_n=\dfrac{1}{n+1}\Rightarrow u_{n+1}=\dfrac{1}{n+2}\)
\(\Rightarrow u_n-u_{n+1}=\dfrac{1}{n+1}-\dfrac{1}{n+2}=\dfrac{1}{\left(n+1\right)\left(n+2\right)}>0\)
\(\Rightarrow u_{n+1}< u_n\Rightarrow\) dãy giảm
Do \(\dfrac{1}{n+1}>0\Rightarrow\) dãy bị chặn dưới bởi 0
\(u_n-1=\dfrac{1}{n+1}-1=-\dfrac{n}{n+1}< 0\Rightarrow u_n< 1\)
\(\Rightarrow\) Dãy bị chặn trên bởi 1
\(\Rightarrow\) Dãy bị chặn