tìm gtnn và gtln của \(A=\frac{x^2-1}{x^2+x+1}\)
1. Tìm GTLN của P=1+\(\frac{1}{x}\)với x≥1
2. Cho x>0, tìm GTNN của P=x+\(\frac{1}{x}\)
3. Cho x>0, tìm GTNN của biểu thức:
\(A=\frac{x^2+x+4}{x+1}\)
4. Cho x>0. Tìm GTNN của P=x2+\(\frac{2}{x}\)
5.Cho x>0. Tìm GTNN của 2x+\(\frac{1}{x^2}\)
6. Tìm GTNN của P=x2-x+\(\frac{1}{x}\)+4 với x>0
7. Cho x≥1. Tìm GTNN của: \(y=\frac{x+2}{x+1}\)
8.Tìm GTLN và GTNN của: \(A=\frac{2x}{x^2+1}\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
x=1 nhe nhap minh di ma ket ban voi minh nhe
1.Tìm GTNN ( hoặc GTLN) của:
a, \(A=\frac{x^2-1}{x^2+1}\)
2. Tìm GTLN của \(B=\frac{x^2}{x^2+4}\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
tìm GTNN và GTLN của P=\(\frac{x^2+x+1}{x^2+2x+1}\)
Kết luận: GTNN của P là 3/4; P không có GTLN.
Giải: P là một giá trị của hàm số đã cho khi và chỉ khi tồn tại x để \(P=\frac{x^2+x+1}{x^2+2x+1}\) (1), tức là phương trình (1) ẩn x phải có nghiệm.
Ta có \(\left(1\right)\Leftrightarrow P\left(x^2+2x+1\right)=x^2+x+1\)\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(P-1\right)=0\).
Nếu \(P=1\) thì (1) trở thành \(x=0\), phương trình có nghiệm x = 0.
Nếu \(P\ne1\) thì phương trình sẽ có nghiệm khi và chỉ khi
\(\Delta=\left(2P-1\right)^2-4\left(P-1\right)^2=4P-3\ge0\Leftrightarrow P\ge\frac{3}{4}\)
Vậy tập giá trị của P là \(\frac{3}{4}\le P< +\infty\). Do đó P không có GTLN và P có GTNN = \(\frac{3}{4}\)
\(P=\frac{x^2+x+1}{x^2+2x+1}=\frac{\frac{3}{4}\left(x^2+2x+1\right)+\frac{\left(x^2-2x+1\right)}{4}}{x^2+2x+1}\)
\(=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x+1\right)^2}\ge\frac{3}{4}\)
Dấu = xảy ra khi \(x=1\)
Tìm GTLN và GTNN của :
\(\frac{x^2+1}{x^2-x+1}\)
\(A=\frac{x^2+1}{x^2-x+1}=\frac{x^2-x+1+x}{x^2-x+1}=1+\frac{x}{x^2-x+1}\)
xét \(b=\frac{x}{x^2-x+1}\Leftrightarrow bx^2-bx+b=x\)
\(\Leftrightarrow bx^2-\left(b+1\right)x+b=0\left(1\right)\)
Bài toán trở thành tìm b để (1) có nghiệm
Nếu \(b=0\Leftrightarrow-x=0\Rightarrow x=0\)
Nếu \(b\ne0\)cần \(\Delta_x\ge0\Rightarrow\left(b+1\right)^2-4.b^2\ge0\)
\(\Leftrightarrow-3b^2+2b+1\ge0\)\(\Delta_b=1-\left(-3\right).1=4\)
\(\Rightarrow\frac{-1}{3}\le b\le1\)
\(\Rightarrow\frac{2}{3}\le A\le2\)
Tìm GTNN và GTLN của
\(D=\frac{x^2-x+1}{x^2+x+1}\)
Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath
\(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0.\)
tương tự chứng minh x^2+x+1>0
\(-2\left(x^2+2x+1\right)\le0\Rightarrow-\frac{2\left(x^2+2x+1\right)}{x^2+x+1}\le0\)
\(\Rightarrow\frac{-2x^2-4x-x}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1-3x^2-3x-3}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1}{x^2+x+1}-3\le0\Rightarrow D\le3.\)
\(2\left(x^2-2x+1\right)\le0;3\left(x^2+x+1\right)>0\)
\(\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}\ge0\Rightarrow\frac{2x^2-4x+2}{3\left(x^2+x+1\right)}=\frac{3\left(x^2-x+1\right)-x^2-x-1}{3\left(x^2+x+1\right)}=d-\frac{1}{3\Rightarrow}d\ge\frac{1}{3}\)
=> GTNN, GTLN
Khó quá em không biết làm
tìm GTNN và GTLN của biểu thức: \(\frac{x^2+1}{x^2-x+1}\)
TXĐ:R
Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)
<=> \(Ax^2-Ax+A-x^2-1=0\)
<=> \(\left(A-1\right)x^2-Ax+A-1=0\)
TH1: A =1 => x =0
TH2: A khác 1
phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)
<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)
A min =2/3 thay vào => x
A max =2 thay vào tìm x .
cho x,y>0 và x+y=1 . tìm GTNN, GTLN của A=\(\frac{x}{y+1}\)+\(\frac{y}{x+1}\)
cho x,y,z >0 và xyz=1 tìm GTNN của A=\(\frac{x^2}{1+y}\)+\(\frac{y^2}{1+z}\)+\(\frac{z^2}{1+x}\)
Cho xy=1
Tìm GTLN và GTNN của \(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2xy\cdot x=x\)( vì \(xy=1\))
\(\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{x}=1\)
Hoan toàn tương tự : \(\frac{y}{x^2+y^4}\le\frac{y}{y}=1\)
Khi đó :
\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le1+1=2\)
Hay \(A\le2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^2\\x^2=y^4\\xy=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}}\)
Thêm đk x,y>0
*Tìm giá trị lớn nhất:
\(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le\frac{x}{2xy.x}+\frac{y}{2xy.y}=\frac{x}{2x}+\frac{y}{2y}=\frac{1}{2}+\frac{1}{2}=1\)
Dấu "=' xảy ra khi x = y = 1
P/s: Bài này hình như không có Min thì phải.:>