Hình bao bởi mặt đáy là một đa giác đều và các mặt bên là các tam giác
bằng nhau có chung đỉnh là:
A. Hình hộp chữ nhật C. Hình nón
B. Hình chóp đều D. Hình lăng trụ đều
Hình bao bởi mặt đáy là một đa giác đều và các mặt bên là các tam giác
bằng nhau có chung đỉnh là:
A. Hình hộp chữ nhật C. Hình nón
B. Hình chóp đều D. Hình lăng trụ đều
Cho hình chóp tam giác đều đáy có cạnh bằng a, góc tạo bởi các mặt bên và đáy bằng 60°. Thể tích khối chóp là:
A. V = a 3 3 24
B. V = a 3 6 24
C. V = a 3 3 8
D. V = a 3 8
Quan sát hình 120 và điền cụm từ và số thích hợp vào các ô trống ở bảng sau, biết rằng các hình đã cho là những hình chóp đều.
Chóp tam giác đều | Chóp tứ giác đều | Chóp ngũ giác đều | Chóp lục giác đều | |
Đáy | Tam giác đều | |||
Mặt bên | Tam giác cân | |||
Số cạnh đáy | 5 | |||
Số cạnh | 10 | |||
Số mặt | 5 |
Chóp tam giác đều | Chóp tứ giác đều | Chóp ngũ giác đều | Chóp lục giác đều | |
Đáy | Tam giác đều | Hình vuông | Ngũ giác đều | Lục giác đều |
Mặt bên | Tam giác cân | Tam giác cân | Tam giác cân | Tam giác cân |
Số cạnh đáy | 3 | 4 | 5 | 6 |
Số cạnh | 6 | 8 | 10 | 12 |
Số mặt | 4 | 5 | 6 | 7 |
Cho hình chóp S.ABC có ABC là tam giác đều cạnh a và SA vuông góc với đáy. Góc tạo bởi mặt phẳng (SBC) và mặt phẳng (ABC) bằng 30º. Khi đó thể tích của khối chóp S.ABC được tính theo a là:
A. a 3 12 .
B. a 3 3 8 .
C. a 3 3 24 .
D. a 3 4 .
Cho hình chóp S.ABCcó đáy ABC là tam giác đều, cạnh 4a. Tam giác SAB nằm trong mặt phẳng vuông góc với đáy, biết rằng hình chiếu của S lên mặt phẳng đáy là điểm H nằm trên cạnh AB và AH =a. Góc hợp bởi SC với mặt phẳng đáy là 60 độ. Tính thể tích khối chóp S.ABC
Cho hình chóp S.ABCcó đáy ABC là tam giác đều, cạnh 4a. Tam giác SAB nằm trong mặt phẳng vuông góc với đáy, biết rằng hình chiếu của S lên mặt phẳng đáy là điểm H nằm trên cạnh AB và AH =a. Góc hợp bởi SC với mặt phẳng đáy là 60 độ. Tính thể tích khối chóp S.ABC
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC=a. Biết SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (ABC). Tính tang của góc tạo bởi đường thẳng SC và mặt đáy (ABC)
A. 3 2 .
B. 15 5 .
C. 15 3 .
D. 3 4 .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC = a. Biết SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (ABC). Tính tang của góc tạo bởi đường thẳng SC và mặt đáy (ABC).
Đáp án B
Gọi H là trung điểm của AB. Do tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy nên
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC = a. Biết SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (ABC). Tính tang của góc tạo bởi đường thẳng SC và mặt đáy (ABC).
A. 3 2
B. 15 5
C. 15 3
D. 3 4
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC = a. Biết SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (ABC). Tính tang của góc tạo bởi đường thẳng SC và mặt đáy (ABC).
A. 3 2
B. 15 5
C. 15 3
D. 3 4