`4x-x^2-2=0`
a) (x\(^2\) + x )\(^2\) + 2(x\(^2\) + x) - 8 = 0
b) ( 2x\(^2\) + x)\(^2\) - (2x\(^2\) + x) -6 =0
c) (x\(^2\) - 4x + 2)\(^2\) + x\(^2\) - 4x - 4 = 0
d) ( 2x\(^2\) + x )\(^2\) - 4x\(^2\) - 2x -8 = 0
Giải giúp mình với ạ !!!
(x-3)^3 +(x+3)^3=0
(x+1)^3-(x-1)^3=0
x^2-4x+3=0
4x^2 +4x +1=0
(x+2)^2-(x+3)^2=0
\(\left(x-3\right)^3+\left(x+3\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)
\(\Leftrightarrow x^2\left(2x+54\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow6x^2=-2\)
\(\Leftrightarrow x^2=-3\) ( vô lí)
Vậy pt vô nghiệm
\(c,x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)
\(\Leftrightarrow-\left(2x+5\right)=0\)
\(\Leftrightarrow-2x-5=0\)
\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)
Học tốt nha you <3
(x-3)^3 +(x+3)^3=0
(x+1)^3-(x-1)^3=0
x^2-4x+3=0
4x^2 +4x +1=0
(x+2)^2-(x+3)^2=0
\(\left(x-3\right)^3+\left(x+3\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)
\(\Leftrightarrow x^2\left(2x+54\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow6x^2=-2\)
\(\Leftrightarrow x^2=-3\) ( vô lí)
Vậy pt vô nghiệm
\(c,x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)
\(\Leftrightarrow-\left(2x+5\right)=0\)
\(\Leftrightarrow-2x-5=0\)
\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)
Học tốt nha you <3
(x-3)^3 +(x+3)^3=0
(x+1)^3-(x-1)^3=0
x^2-4x+3=0
4x^2 +4x +1=0
(x+2)^2-(x+3)^2=0
\(\left(x-3\right)^3+\left(x+3\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)
\(\Leftrightarrow x^2\left(2x+54\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow6x^2=-2\)
\(\Leftrightarrow x^2=-3\) ( vô lí)
Vậy pt vô nghiệm
\(c,x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)
\(\Leftrightarrow-\left(2x+5\right)=0\)
\(\Leftrightarrow-2x-5=0\)
\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)
Học tốt nha you <3
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
a,x^2-9x+20=0
b,x^3-4x^2+5x=0
c,x^2=2x-15=0
d,(x^2-1)^2=4x+1
e,4x^3-9x^2+6x-1=0
f,x^4-4x^3-x^2+16x-12=0
a) Ta có: \(x^2-9x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
Vậy: x∈{4;5}
b) Ta có: \(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)
Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1=\left(x-2\right)^2+1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)
hay \(x^2-4x+5>0\forall x\)(2)
Từ (1) và (2) suy ra x=0
Vậy: x=0
c) Sửa đề: \(x^2-2x-15=0\)
Ta có: \(x^2-2x-15=0\)
\(\Leftrightarrow x^2+3x-5x-15=0\)
\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: x∈{-3;5}
d) Ta có: \(\left(x^2-1\right)^2=4x+1\)
\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)
\(\Leftrightarrow x^4-2x^2-4x=0\)
\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)
\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)
\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)
Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
hay \(x^2+2x+2>0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: x∈{0;2}
Tìm x
x^2 - 4x = 0
4x^2 - 9 = 0
2x ( x - 3 ) + 5( x - 3 ) = 0
x ( 2x + 9 )- 4x - 18
( 2x - 1 )^2 - ( x + 2 )^2 = 0
a) \(x^2-4x=0\)
\(x\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
b) \(4x^2-9=0\)
\(\left(2x\right)^2-3^2=0\)
\(\left(2x+3\right)\left(2x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}\)
c) \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)
d) \(x\left(2x+9\right)-4x-18=0\)
\(x\left(2x+9\right)-2\left(2x+9\right)=0\)
\(\left(2x+9\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)
e) \(\left(2x-1\right)^2-\left(x+2\right)^2=0\)
\(\left(2x-1-x-2\right)\left(2x-1+x+2\right)=0\)
\(\left(x-3\right)\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}}\)
\(x^2-4x=0\)
\(x.\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\Leftrightarrow x=4\end{cases}}\)
\(4x^2-9=0\)
\(2^2x^2-9=0\)
\(\left(2x\right)^2-9=0\)
\(\left(2x\right)^2-3^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x\right)^2=\left(-3\right)^2\\\left(2x\right)^2=3^2\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\2x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}}\)
\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\cdot\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0+3\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)
\(x\left(2x+9\right)-4x-18=0\)
\(x\left(2x+9\right)-\left(4x+18\right)=0\)
\(x\left(2x+9\right)-\left(2\cdot2x+2\cdot9\right)=0\)
\(x\left(2x+9\right)-2.\left(2x+9\right)=0\)
\(\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-9\\x=0+2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)
\(\left(2x-1\right)^2-\left(x+2\right)^2=0\)
\(\Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=x+2\\2x-1=-x+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=3+x\\2x=-x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-x=3\\2x+x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}}}\)
\(\)
\(x^2+4x+3=0\)
\(x^2+x+3x+3=0\)
\(x\left(x+1\right)+3\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+3\right)=0\)
\(\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)
\(4x^2+4x-3=0\)
\(4x^2-2x+6x-3=0\)
\(2x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\left(2x-1\right)\left(2x+3\right)=0\)
\(\left[\begin{array}{nghiempt}2x-1=0\\2x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=1\\2x=-3\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-\frac{3}{2}\end{array}\right.\)
\(x^2-x-12=0\)
\(x^2-4x+3x-12=0\)
\(x\left(x-4\right)+3\left(x-4\right)=0\)
\(\left(x-4\right)\left(x+3\right)=0\)
\(\left[\begin{array}{nghiempt}x-4=0\\x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=4\\x=-3\end{array}\right.\)
\(x^2-25-\left(x-5\right)=0\)
\(\left(x-5\right)\left(x+5\right)-\left(x-5\right)=0\)
\(\left(x-5\right)\left(x+5-1\right)=0\)
\(\left(x-5\right)\left(x+4\right)=0\)
\(\left[\begin{array}{nghiempt}x-5=0\\x+4=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=5\\x=-4\end{array}\right.\)
\(x^2\left(x^2+1\right)-x^2-1=0\)
\(x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)
\(\left(x^2+1\right)\left(x^2-1\right)=0\)
\(\left(x^2+1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+1=0\end{array}\right.\) (vì \(x^2+1\ge1>0\))
\(\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\)
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
Chứng minh:
1) A=x2+2x+2>0 với mọi x
2) B=x2+6x+11>0 với mọi x
3) C=4x2+4x-2<0 với mọi x
4) D=-x2-6x-11<0 với mọi x
5) E=-4x2+4x-2<0 với mọi x
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
\(1.A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì\(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1\forall x\)
hay\(\left(x+1\right)^2+1>0\forall x\)
\(2.B=x^2+2x.3+9+2=\left(x+3\right)^2+2\)
CM tương tự A
\(3.C=4x^2+4x-2=\left(2x+1\right)^2-2\)
Vì\(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-2\ge-2\forall x\)(có thể >0)
4,5 Cm tương tự