Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 10 2018 lúc 9:34

Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z).

Hiệu bình phương của hai số lẻ đó bằng:

   (2a + 1)2 – (2b + 1)2

= (4a2 + 4a + 1) – (4b2 + 4b + 1)

= (4a2 + 4a) – (4b2 + 4b)

= 4a(a + 1) – 4b(b + 1)

Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2

⇒ a.(a + 1) ⋮ 2 và b.(b + 1) ⋮ 2.

⇒ 4a(a + 1) ⋮ 8 và 4b(b + 1) ⋮ 8

⇒ 4a(a + 1) – 4b(b + 1) ⋮ 8.

Vậy (2a + 1)2 – (2b + 1)2 chia hết cho 8 (đpcm).

Sách Giáo Khoa
Xem chi tiết
Quốc Đạt
24 tháng 4 2017 lúc 11:36

Giải bài 3 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

Hồng Hạnh pipi
17 tháng 10 2017 lúc 21:36

Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)

Ta có:

(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)

= (4k+4).2

=8.(k+1)

Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8

\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)

minh anh
Xem chi tiết
Trần Tuyết Như
26 tháng 5 2016 lúc 19:22

gọi 2 số lẻ bất kì lần lượt là 2a + 1 và 2a + 3

Cần chứng minh (2a + 1)- (2a + 3)2 chia hết cho 8

có: (2a + 1)- (2a + 3)2 = 4x2 + 4x + 1 - 4x - 12x - 9  = -8x - 8 = -8 (x + 1) 

-8 (x + 1) chia hết cho 8  

=> (đpcm)

soyeon_Tiểu bàng giải
26 tháng 5 2016 lúc 17:16

Gọi 2  lẻ bất kì là a và b

Phải chứng minh a2-b2 chia hết cho 8

Do a2  và b2 là số chính phương nên chia 8 chỉ có thể dư 0;1 hoặc 4. Mà a, b lẻ nên a2  và b2  lẻ suy ra a2  và b2 chia 8 dư 1

Suy ra a2-b2 chia hết cho 8

Chứng tỏ hiệu các bình phương của 2 số lẻ bất kì thí chia hết cho 8

Cô Hoàng Huyền
27 tháng 5 2016 lúc 11:13

Trần Như: Nếu gọi 2 số lẻ bất kỳ thì ko gọi là 2a+1 và 2a+3 đc, vì đó chỉ là hai số lẻ liên tiếp thôi. :) Ta trình bày như sau:

Gọi hai số lẻ bất kì là \(2a+1\) và \(2b+1\)

Khi đó hiệu bình phương của hai số là \(A=\left(2a+1\right)^2-\left(2b+1\right)^2=4a^2+4a-4b^2-4b=4\left(a^2-b^2+a-b\right)=4\left(a-b\right)\left(a+b+1\right)\)

Ta thấy \(\left(a-b\right)\left(a+b+1\right)\) luôn chia hết cho 2 nên A luôn chia hết cho 8.

Soyeon làm như vậy cũng đc, ta sử dụng đồng dư :)

trần thị hoàng yến
Xem chi tiết
Trần Tuyết Như
30 tháng 6 2016 lúc 19:47

gọi 2 số lẻ đó lần lượt là: 2a + 1 và 2a + 3

cần chứng minh    (2a + 1)2 - (2a + 3)2 chia hết cho 8

có:  (2a + 1)2 - (2a + 3)2 = 4a2 + 4a + 1 - 4a2 - 12a - 9 = -8a - 8 = -8 (a + 1)

-8 (a + 1) chia hết cho 8

=> đpcm

trần thị hoàng yến
30 tháng 6 2016 lúc 20:01

bạn ơi đây là 2 số lẻ bất kì thì như vậy có đúng ko ạ

Trần Tuyết Như
30 tháng 6 2016 lúc 20:10

có lẽ đọc nhầm đề....

phung thi thuy tien
Xem chi tiết
soyeon_Tiểu bàng giải
30 tháng 6 2016 lúc 14:16

Ta đã biết số chính phương chia 8 chỉ có thể dư 0; 1;4 => bình phương của 1 số lẻ chia 8 dư 1

=> hiệu các bình phương của 2 số lẻ bất kì chia hết cho 8

=> đpcm

Ủng hộ mk nha ♡_♡☆_☆

An Hau
Xem chi tiết
Die Devil
7 tháng 8 2016 lúc 20:42

Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

Trương Việt Hoàng
7 tháng 8 2016 lúc 20:46

Gọi 2 số lẻ đó lần lượt là 2k+1 và 2a+1

(2k+1)2-(2a+1)2

= 4k2+4k+1-4a2-4a-1

= 4(k2+k+a2+a)

Như vậy ta đã chứng minh được nó chia hết cho 4 giờ ta chứng minh k2+k+a2+a chia hết cho 2, 

Thật vậy ta có k2+k=k(k+1) ; a2+a=a(a+1)

Do 2 số tự nhiên liên tiếp luôn chia hết cho 2 suy ra a2+a và k2+k chia hết cho 2

Suy ra a2+a+k2+k chia hết cho 2 

Như vậy bài toán được chứng minh

Nguyễn Lê Quỳnh Như
Xem chi tiết
doremon
22 tháng 7 2015 lúc 19:25

gọi số lẻ đầu tiên là 2n-1, => số lẻ tiếp theo là 2n+1 
(2n+1)^2 - (2n-1)^2=(2n+1-2n+1)(2n+1+2n-1) = 2.4n=8n chia hết cho 8

 

Cao Thị Thu Uyên
Xem chi tiết
Tập-chơi-flo
29 tháng 10 2018 lúc 19:50

Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z)

Hiệu bình phương của hai số lẻ đó bằng :

\({\left( {2a{\rm{ }} + {\rm{ }}1} \right)^2}-{\rm{ }}{\left( {2b{\rm{ }} + {\rm{ }}1} \right)^2} = \left( {4{a^2} + {\rm{ }}4a{\rm{ }} + {\rm{ }}1} \right){\rm{ }}-{\rm{ }}\left( {4{b^2} + {\rm{ }}4b{\rm{ }} + 1} \right)\)

\(= \left( {4{a^2} + {\rm{ }}4a} \right){\rm{ }}-{\rm{ }}\left( {4{b^2} + {\rm{ }}4b} \right){\rm{ }} = {\rm{ }}4a\left( {a{\rm{ }} + 1} \right){\rm{ }}-{\rm{ }}4b\left( {b{\rm{ }} + {\rm{ }}1} \right)\)

Vì tích của hai số nguyên liên tiếp luôn chia hết cho 2 nên a(a+1) và b(b+1) chia hết cho 2.

Do đó 4a(a + 1) và 4b(b + 1) chia hết cho 8

4a(a + 1) – 4b(b + 1) chia hết cho 8.

Vậy \({\left( {2a{\rm{ }} + {\rm{ }}1} \right)^2}-{\rm{ }}{\left( {2b{\rm{ }} + {\rm{ }}1} \right)^2}\) chia hết cho 8.

Shiragami Yamato
29 tháng 10 2018 lúc 19:50

Gọi hai số lẻ bất kì là \(2a+1\) và \(2b+1\)

Khi đó hiệu bình phương của hai số là \(A=\left(2a+1\right)^2-\left(2b+1\right)^2=4a^2+4a-4b^2-4b=4\left(a^2-b^2+a-b\right)=4\left(a-b\right)\left(a+b+1\right)\)

Ta thấy \(\left(a-b\right)\left(a+b+1\right)\) luôn chia hết cho 2 nên A luôn chia hết cho 8.

Nguyễn Ngọc Trang Linh v...
29 tháng 10 2018 lúc 19:51

Gọi 2 số lẻ bất kì là 2n+1; 2m+1 (n, m thuộc N) 
Ta có: (2n+1)^2-(2m+1)^2 
=4n^2+4n+1-4m^2-4m-1 
=4(n^2+n-m^2-m) 
= 4[(n^2-m^2)+(n-m)] 
= 4[(n-m)(n+m)+(n-m)] 
= 4(n-m)(n+m+1) 
+ nếu n, m cùng chẵn hoặc cùng lẻ thì (n-m) chẵn:2 nên hiệu hai bp: 8 
+ nếu n, m lẻ và chẵn(hoặc ngược lại) thì (n+m+1) chẵn:2 nên hiệu hai bp:8

Trần Phương Linh
Xem chi tiết
IR IRAN(Islamic Republic...
12 tháng 7 2021 lúc 16:49

Gọi 2 số lẻ đó là 2k + 1 ; 2n + 1 (k;n là số tự nhiên)

Khi đó (2k + 1)2 - (2n + 1)2

= (2k + 1 + 2n + 1)(2k + 1 - 2n - 1) 

= (2k + 2n + 2)(2k - 2n) 

= 4(k + n + 1)(k - n) \(⋮4\) (0)

Nếu k ; n cùng chẵn hoặc cùng lẻ => k - n \(⋮2\) => đpcm (1)

Nếu k lẻ n chẵn hay k chẵn n lẻ => k + n + 1 \(⋮2\)(đpcm) (2)

Từ (0) ; (1) ; (2) => đpcm