a=\(\frac{3}{54}+\frac{5}{126}+\frac{7}{294}+\frac{8}{609}+\frac{13}{1218}\)
\(\frac{3}{54}+\frac{5}{126}+\frac{7}{294}+\frac{8}{609}\)
\(\frac{3}{54}+\frac{5}{126}+\frac{7}{294}+\frac{8}{609}\)
\(=\frac{3}{6.9}+\frac{5}{9.14}+\frac{7}{14.21}+\frac{8}{21.29}\)
\(=\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{21}+\frac{1}{21}-\frac{1}{29}\)
\(=\frac{1}{6}-\frac{1}{29}=\frac{23}{174}\)
lm ơn giúp mk nha
làm xong mk tk cho
tính bằng cách hợp lý
\(\frac{3}{54}+\frac{5}{126}+\frac{7}{294}\) chia \(\frac{5}{24}+\frac{5}{104}+\frac{5}{234}\)
tính tổng
S= \(\frac{4}{1+2}\)+\(\frac{4}{1+2+3}\)+\(\frac{4}{1+2+3+4}\)+...+\(\frac{4}{1+2+3+...+100}\)
O=\(\frac{1}{1x2}\)+\(\frac{2}{2x4}\)+\(\frac{3}{4x7}\)+\(\frac{4}{7x11}\)+\(\frac{5}{11x16}\)
X=\(\frac{3}{54}\)+\(\frac{5}{126}\)+\(\frac{7}{294}\)+\(\frac{8}{609}\)
giúp mình nha
Ai nhanh mình sẽ tick
Tinh nhanh: \(\frac{3}{54}+\frac{5}{126}+\frac{7}{294}\)tren \(\frac{5}{24}+\frac{5}{104}+\frac{5}{234}\)
(Day la phan so, tu so la 3 ps dau, mau so la 3 ps sau).Giup mik voi.Thanks!!!
A=3/54+5/126+7/294+8/609
A=3/54+5/126+7/294+8/609
=1/18+5/126+1/42+8/609
=2/21+15/406
=23/174
tick cho mik nha
A=3/54+5/126+7/294+8/609
A=3/54+5/126+7/294+8/609
=1/18+5/126+1/42+8/609
=2/21+15/406
=23/174
tick cho mik nha
3/54+5/126+7/294+8/609
1/. A = 3/54 + 5/ 126 + 7/ 294 + 8/609
TÍNH BẰNG CÁCH THUẬN TIỆN NHẤT
A=\(\frac{3}{9.6}+\frac{5}{2.7.9}+\frac{7}{6.7.7}+\frac{8}{3.7.29}\) = \(\frac{1}{18}+\frac{5}{7.18}+\frac{1}{6.7}+\frac{8}{3.7.29}\)
= \(\frac{7+5}{7.18}+\frac{1}{6.7}+\frac{8}{3.7.29}\)=\(\frac{2}{7.3}+\frac{1}{6.7}+\frac{8}{3.7.29}\)= \(\frac{1}{3.7}.\)(\(\frac{2}{1}+\frac{1}{2}+\frac{8}{29}\))=
=\(\frac{1}{21}.\)(\(\frac{116+29+16}{58}\))=\(\frac{1}{21}.\frac{161}{58}=\frac{161}{1218}\)
\(\dfrac{1}{3\times7}+\dfrac{1}{7\times11}+\dfrac{1}{11\times15}+...+\dfrac{1}{a\times\left(a+4\right)}=\dfrac{50}{609}\)
\(\dfrac{1}{4}\times\left(\dfrac{4}{3\times7}+\dfrac{4}{7\times11}+...+\dfrac{4}{a\times\left(a+4\right)}\right)=\dfrac{50}{609}\)
\(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{a}-\dfrac{1}{a\times4}=\dfrac{50}{609}\div\dfrac{1}{4}\)
\(\dfrac{1}{3}-\dfrac{1}{a\times4}=\dfrac{200}{609}\)
\(\dfrac{1}{a\times4}=\dfrac{1}{3}-\dfrac{200}{609}\)
\(\dfrac{1}{a\times4}=\dfrac{1}{203}\)
\(a\times4=203\)
\(a=\dfrac{203}{4}\)
\(\dfrac{1}{3\times7}\)+\(\dfrac{1}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{1}{a\times\left(a+4\right)}\) = \(\dfrac{50}{609}\)
4\(\times\)( \(\dfrac{1}{3\times7}\) +\(\dfrac{1}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{1}{a\times\left(a+4\right)}\)) = \(\dfrac{50}{609}\) \(\times\)4
\(\dfrac{4}{3\times7}\)+ \(\dfrac{4}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{4}{a\times\left(a+4\right)}\) = \(\dfrac{50}{609}\) \(\times\) 4
\(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\)-\(\dfrac{1}{15}\)+...+\(\dfrac{1}{a}\)-\(\dfrac{1}{a+4}\) = \(\dfrac{200}{609}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{a+4}\) = \(\dfrac{200}{609}\)
\(\dfrac{1}{a+4}\) = \(\dfrac{1}{3}\) - \(\dfrac{200}{609}\)
\(\dfrac{1}{a+4}\) = \(\dfrac{1}{203}\)
a + 4 = 203
\(a\) = 203 - 4
\(a\) = 199
Đáp số: \(a\) = 199