3) Tìm x để \(\dfrac{A}{B}>\dfrac{3}{2}\)
\(\)A=\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)với B=\(\dfrac{x-3}{x+1}\)
a) rút gọn A
b) P=A.B,tìm x để P=\(\dfrac{9}{2}\)
c) tìm x để B<1
a: Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x}{x-3}\)
b: Ta có P=AB
nên \(P=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì 9x+9=6x
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
a) \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\\ \Rightarrow A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{3x}{x-3}\)
a. ĐKXĐ: \(x\ne\pm3\)
\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{x^2-9}\)
\(=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-\left(3-11x\right)}{x^2-9}\)
\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{x^2-9}\)
\(=\dfrac{3x^2+9x}{x^2-9}=\dfrac{3x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x-3}\)
b. \(P=A.B\)
\(\Rightarrow P=\dfrac{3x}{x-3}.\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\)
Ta có \(P=\dfrac{9}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{3x}{x+1}=\dfrac{9}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\6x=9x+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\-3x=9\end{matrix}\right.\) \(\Leftrightarrow x=-3\)
c. \(B< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-3}{x-1}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-3}{x-1}-1< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{2}{1-x}< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\1-x< 0\end{matrix}\right.\) \(\Leftrightarrow x>1\)
Cho A=\(\dfrac{x+2}{x+3}\)- \(\dfrac{5}{x^2+x-6}\)+ \(\dfrac{1}{2-x}\)
a) Tìm điều kiện của x để A có nghĩa
b) Rút gọn A
c) Tìm x để A=\(\dfrac{-3}{4}\)
d) Tìm x để biểu thức A nguyên
Cho các biểu thức:\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2};B=\dfrac{x-3}{x+1}\) \(\left(0\le x,x\ne9\right)\) a, Rút gọn A
b, Với P = A.B ,tìm x để P = \(\dfrac{9}{2}\)
c, Tìm x để B < 1
d, Tìm số nguyên x để P là số nguyên
a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)
b)
ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
Ta có: P=AB
\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)
\(=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)
\(\Leftrightarrow9\left(x+1\right)=6x\)
\(\Leftrightarrow9x-6x=-9\)
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)
Cho biểu thức A = \(\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
a)Tìm điều kiện của x để A có nghĩa.
b) Rút gọn A.
c)Tìm x để A = \(\dfrac{-3}{4}\) .
d) Tìm x nguyên để biểu thức A nguyên.
a, ĐKXĐ:\(\left\{{}\begin{matrix}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x^2+x-6\ne0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)
b, \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+3\right)}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x-4}{x-2}\)
\(c,A=\dfrac{-3}{4}\\ \Leftrightarrow\dfrac{x-4}{x-2}=\dfrac{-3}{4}\\ \Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\\ \Leftrightarrow4x-16x=-3x+6\\ \Leftrightarrow4x-16x+3x-6=0\\ \Leftrightarrow7x-22=0\\ \Leftrightarrow x=\dfrac{22}{7}\)
d, \(A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)
Để \(A\in Z\Rightarrow\dfrac{2}{x-2}\in Z\Rightarrow x-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Ta có bảng:
x-2 | -2 | -1 | 1 | 2 |
x | 0 | 1 | 3 | 4 |
Vậy \(x\in\left\{0;1;3;4\right\}\)
a: ĐXKĐ: \(x\notin\left\{-3;2\right\}\)
b: \(A=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\dfrac{x-4}{x-2}\)
c: Để A=-3/4 thì x-4/x-2=-3/4
=>4x-16=-3x+6
=>7x=22
hay x=22/7
Cho \(B=\left(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x}\right):\left(1-\dfrac{1}{x+3}\right)\)
a ) Rút gọn B
b ) Tính B tại x thỏa mãn |2x+1|=5
c ) Tìm x để \(B=-\dfrac{3}{5}\)
d ) Tìm x để B < 0
`đk:x ne +-3,x ne -2`
`B=(21/(x^2-9)-(x-4)/(3-x)-(x-1)/(3+x)):(1-1/(x+3))`
`=(21/(x^2-9)+(x-4)/(x-3)-(x-1)/(x+3)):((x+3-1)/(x+3))`
`=((21+x^2-x-12-x^2+4x-3)/((x-3)(x+3))):(x+2)/(x+3)`
`=(3x+6)/((x-3)(x+3))*(x+3)/(x+2)`
`=(3x+6)/((x-3)(x+2))`
`=3/(x-3)`
`b)|2x+1|=5`
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2(tm)\\x=-3(l)\end{array} \right.\)
`=>B=3/(2-3)=-3`
`c)B=-3/5`
`<=>3/(x-3)=3/(-5)`
`<=>x-3=-5`
`<=>x=-2(l)`
`d)B<0`
`<=>3/(x-3)<0`
Mà `3>0`
`=>x-3<0<=>x<3`
a) đk: \(x\ne\pm3\)
\(B=\left[\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-4}{x-3}-\dfrac{x-1}{x+3}\right]:\left(\dfrac{x+3-1}{x+3}\right)\)
= \(\left[\dfrac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\dfrac{x+2}{x+3}\)
= \(\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}\)
= \(\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)
b) Để \(\left|2x+1\right|=5\)
<=> \(\left[{}\begin{matrix}2x+1=5< =>x=2\left(c\right)\\2x+1=-5< =>x=-3\left(l\right)\end{matrix}\right.\)
Thay x = 2, ta có;
B = \(\dfrac{3}{2-3}=-3\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3}{x-3}=\dfrac{-3}{5}\)
<=> x - 3 = -5
<=> x = -2
d) Để B < 0
<=> \(\dfrac{3}{x-3}< 0\)
<=> x - 3 < 0
<=> x < 3
a)\(B=\left(\dfrac{21}{x^2-9}-\dfrac{x-4}{3-x}-\dfrac{x-1}{3+x}\right):\left(1-\dfrac{1}{x+3}\right)\\ =\left(\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+2}{x+3}\)
\(=\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)
b)\(\left|2x+1\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\left(loại\right)\end{matrix}\right.\)
với x=2 gt của B là
\(B=\dfrac{3}{2-3}=-3\)
c)\(B=\dfrac{3}{x-3}=-\dfrac{3}{5}\Leftrightarrow x-3=-5\Leftrightarrow x=-2\)
d) \(B=\dfrac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
tự kết luận mỗi câu
Bài 2: Cho A = \(\dfrac{x}{x+2}\)
B = \(\dfrac{x^2}{x^2-4}-\dfrac{1}{2-x}+\dfrac{1}{x+2}\)
a. Tìm đkxđ của A,B
b. Rút gọn B
c. Tìm gt nguyên lớn nhất của x để B nguyên
d. Ta có: P = A.B. Tìm x để P = \(\dfrac{3}{2}\)
(\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3x+3}{x-9}\)):(\(\dfrac{2\sqrt{x}-2}{\sqrt{x}+3}-1\))
a) Rút gọn biểu thức
b) Tìm x để Q<\(\dfrac{-1}{2}\)
c) Tìm min Q
\(a,=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}-3}{\sqrt{x}+3}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}\)
a: \(=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
2) N=\(\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
a) Rút gọn N ( đkxđ )
b) Tìm x để N= 8/9
c) Tìm x để \(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\)
a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\) \(\left(ĐKXĐ:x\ge0\right)\)
\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(\text{}\text{}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)
\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)
c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)
\(\Leftrightarrow x-\sqrt{x}+1>x\)
\(\Leftrightarrow x< 1\)
a: ĐKXĐ: \(x\ge0\)
Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
Cho B = \(\left(\dfrac{x+2}{x^2-5x+6}-\dfrac{x+3}{2-x}-\dfrac{x+2}{x-3}\right):\left(2-\dfrac{x}{x+1}\right)\)
a) Tìm đkxđ của C
b) Rút gọn B
c) Tìm x để B = 0
Cho biểu thức \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
a) Rút gọn \(A\)
b) Tính \(A\) biết \(\left|x-3\right|=2\)
c) Tìm \(x\) để \(A=\dfrac{1}{2}\)
d) Tìm \(x\) để \(A>1\)
e) Tìm \(x\) nguyên để \(A\) có giá trị nguyên
f) Với \(x>1\). Tìm giá trị nhỏ nhất của \(A\).
a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |x-3|=2
=>x-3=2 hoặc x-3=-2
=>x=5(nhận) hoặc x=1(loại)
Khi x=5 thì \(E=\dfrac{5^2}{5-1}=\dfrac{25}{4}\)
c: Để E=1/2 thì \(\dfrac{x^2}{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow2x^2-x+1=0\)
hay \(x\in\varnothing\)
f) \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-x+x-1+1}{x-1}=\dfrac{x\left(x-1\right)+x-1+1}{x-1}=x+1+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\dfrac{1}{x-1}}+2=4\)\(A=4\Leftrightarrow x=2\)
-Vậy \(A_{min}=4\)