H=1/3+1/9+1/27+....+1/2187
h = 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/2187 ai giúp mình với
Ta có \(H=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+....+\frac{1}{2187}\)
Suy ra \(3H=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{729}\)
Nên \(3H-H=1-\frac{1}{2187}\)hay \(2H=1-\frac{1}{2187}\)
Do đó \(H=\frac{1}{2}-\frac{1}{4374}=\frac{1093}{2187}\)
Vậy \(H=\frac{1093}{2187}\)
1+1/3+1/9+1/27+....+1/2187
Tham khảo tại đây
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Chúc học tốt!
Đặt \(B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(\Rightarrow3B=3.\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)\)
\(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\)
\(\Rightarrow3B-B=\left(3+1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)-\)\(\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)\)
\(\Rightarrow2B=3-\frac{1}{2187}\)
\(\Rightarrow B=\left(3-\frac{1}{2187}\right):2\)
\(\Rightarrow B=\frac{6560}{2187}\)
Chắc sai !!!
Đặt A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
= \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
3A = \(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
Lấy 3A - A = \(\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
2A = \(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}-1-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^7}\)
2A = \(3-\frac{1}{3^7}\)
A = \(\left(3-\frac{1}{3^7}\right):2\)
\(\Rightarrow1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}=\left(3-\frac{1}{3^7}\right):2\)
a = 1/3 + 1/9 + 1/27 + ... + 1/2187 + 1/6561 = ?
\(3A=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\)
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{6561}\right)\)
\(2A=\dfrac{6560}{6561}\)
\(A=\dfrac{3280}{6561}\)
1/3 + 1/9 + 1/27 + 1/81 +...+1/729 + 1/2187
Đặt \(V=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+...+\dfrac{1}{729}+\dfrac{1}{2187}\)
\(\Rightarrow3V=3.\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+...+\dfrac{1}{729}+\dfrac{1}{2187}\right)\)
\(\Rightarrow3V=1+\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+...+\dfrac{1}{729}\right)\)
\(\Rightarrow3V=1+V-\dfrac{1}{2187}\)
\(\Rightarrow2V=1-\dfrac{1}{2187}\)
\(\Rightarrow V=\dfrac{1093}{2187}\).
A= 1/3 + 1/9 + 1/27 + 1/81 +...+1/729 + 1/2187
3A = 1 + 1/3 + 1/9 + 1/27 + 1/81 +...+1/729
=> 3A - A = 1 - 1/2187
=> 2A = ... => A = ...S=1+1/3+1/9+1/27+...+1/2187
S=1+1/3+1/9+1/27+..+1/2187
S=1+1/3+1/9+1/27+.....+1/2187
S = 1 + 1/3 + 1/9 + 1/27 +.....+ 1/2187
S x 3 = 3 + 1 + 1/3 + 1/9 + 1/27 +........+ 1/729
S x 3 - S = ( 3 + 1 + 1/3 + 1/9 + 1/27 +........+ 1/729 ) - ( 1 + 1/3 + 1/9 + 1/27 +.....+ 1/2187 )
S x 3 - S = 3 - 1/2187
S x 3 - S = 6560/2187
S = 6560/2187 : 2
Vậy S = 6560/4374
1/3 +1/9 + 1/27 + 1/81 + 1/243 + 1/729 + 1/2187 =?
lấy MS chung là 2187, ta có:
729 + 243 + 81 + 9 + 3 + 1
________________________ = 1066/2187
2187
1066/2187.
x : 1/3 + x : 1/9 + x : 1/27 +...+ x : 1/2187 = 9837
<=>3x+9x+27x+81x+243x+729x+2187x = 9837
<=>3279 x = 9837
<=>x=3
1+3+9+27+....+2187+6561