Phân tích đa thức thành nhân tử : a(b-c)3+b(c-a)3+c(a-b)3 theo cách xét giá trị riêng hoặc đặt
Phân tích đa thức thành nhân tử bằng phương pháp xét giá trị riêng: A= (a+b+c)3-a3-b3-c3
A= (a+b+c)3-a3-b3-c3
= a3+b3+c3+3(a+b)(a+c)(b+c)-a3-b3-c3
= 3(a+b)(a+c)(b+c)
Phân tích đa thức thành nhân tử bằng cách xét giá trị riêng: N = a(m-a)^2 + b(m-b)^2 + c(m-c)^2 - abc với 2m = a+b+c
Phân tích đa thức sau thành nhân tử bằng phương pháp xét giá trị riêng: (a+b+c)^5 - a^5 - b^5 - c^5
\(\left(a+b+c\right)^5-a^5-b^5-c^5\)
\(=5\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)
dùng phương pháp xét giá trị riêng phân tích đa thức sau thành nhân tử: M=a(b+c-a)2+b(c+a-b)2+c(a+b-c)2+(a+b-c)(b+c-a)(c+a-b)
phân tích đa thức thành nhân tử theo nhiều cách ( càng nhiều cách càng tốt)
a) a^3 + b^3 + c^3 - 3abc
b) (a +b +c)^3 -a^3 - b^3 - c^3
a) ở lop 8 đã được học hằng đẳng thức a^3+b^3+c^3 rùi. áp dụng vào bài này thì ta có
a^3+b^3+c^3-3abc=(a^3+b^3+c^3)-3abc=(a+b+c).[a^2+b^2+c^2-(ab+ac+bc)]+3abc-3abc=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]
mai hương làm đúng rùi nhưng ở bước cuối bạn viết nhầm. là -ab chứ ko phải là -3ab
mình làm đk câu a thui :
trong chương trình lớp 8 bạn còn nhớ cái bài 31 là chứng minh a3+b3=(a+b)3-3ab(a+b) ko??
coi như chúng minh đk rùi , thay vào ta có :
a3+b3+c3-3abc=(a+b)3-3ab(a+b)+c3-3abc
=((a+b)3+c3)-(3ab+3abc)
=(a+b+c).((a+b)2-(a+b).c+c2)-3ab.(a+b+c)
=(a+b+c).((a+b)2-(a+b).c+c2-3ab)
= (a+b+c).(a2+2ab+b2-ac-bc+c2-3ab)
có thể sắp xếp lại cho dễ nhìn =(a+b+c).(a2+b2+c2-ac-bc-3ab)
(ko biết mình đánh sai chỗ nào ko bạn kiểm tra lại nhé)
1.phân tích đa thức thành nhân tử
x^3-5x^2+8x-4
2.Cho các số a,b,c thỏa mãn a+b+c=3/2. Tìm giá trị nhỏ nhất của biểu thức P= a^2+b^2+c^2
1.phân tích đa thức thành nhân tử
x3 - 5x2 + 8x - 4
= x3 - x2 - 4x2 + 4x + 4x - 4
= x2( x - 1 ) - 4x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - 4x + 4 ) = ( x - 1 )( x - 2 )2
2.Cho các số a,b,c thỏa mãn a+b+c=3/2. Tìm giá trị nhỏ nhất của biểu thức P= a2 + b2 + c2
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P=a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{\left(\frac{3}{2}\right)^2}{3}=\frac{3}{4}\)
Đẳng thức xảy ra <=> a=b=c1/2. Vậy MinP = 3/4
Phân tích đa thức sau thành nhân tử bằng cách đổi biến: đặt a+b=m, a-b=n
\(A=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
Mình đang cần lời giải (chi tiết). CẢM ƠN
(a+b+c)^3 thì viết được thành [(a+b)+c)]^3 rồi AD hằng đẳng thức để tính. Còn với (a^3+b^3+c^3) ta viết được (a+b)^3 -3a^2b -3ab^2 + c^3=(a+b)^3 -3ab(a+b)+c^3 ...thay vào rồi đổi biến
phân tích đa thức thành nhân tử :a^3(b-c)+b^3(c-a)+c^3(a-b)
Phân tích đa thức thành nhân tử : (b^3-c^3)a + b(c^3-a^3) + c(a^3-b^3)
phân tích đa thức thành nhân tử a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3)
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c\)
\(=\left(ab^3-a^3b\right)+\left(bc^3-ac^3\right)+\left(a^3c-b^3c\right)\)
\(=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)\)
\(=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c-abc+b^2c\right)\)