Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Nhả Uyên
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 9 2021 lúc 15:42

\(y'=-4x^3-4x=-4x\left(x^2+1\right)=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(-\infty;0\right)\) và nghịch biến trên \(\left(0;+\infty\right)\)

Qua \(x=0\) ta thấy y' đổi dấu từ dương sang âm nên \(x=0\) là điểm cực đại

Thảo Nguyên Đoàn
Xem chi tiết
Hồ Nhật Phi
20 tháng 10 2021 lúc 7:35

Tập xác định: D=\(\left[-2\sqrt{2};2\sqrt{2}\right]\).

\(y'=1-\dfrac{x}{\sqrt{8-x^2}}\) = 0 \(\Rightarrow\) x=2.

Bảng biến thiên:

undefined

Vậy hàm số đã cho đồng biến trên khoảng (\(-2\sqrt{2}\);2), nghịch biến trên khoảng (2;\(2\sqrt{2}\)) và y=4 (tại x=2).

Tham khảo: Đồ thị:

undefined

Lê Ngọc Nhả Uyên
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 12:14

a. ĐKXĐ: \(-3\le x\le3\)

\(y'=1-\dfrac{x}{\sqrt{9-x^2}}=\dfrac{\sqrt{9-x^2}-x}{\sqrt{9-x^2}}=0\Rightarrow x=\dfrac{3\sqrt{2}}{2}\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(-3;\dfrac{3\sqrt{2}}{2}\right)\) và nghịch biến trên \(\left(\dfrac{3\sqrt{2}}{2};3\right)\)

b.

ĐKXĐ: \(x\ne2\)

\(y'=\dfrac{\left(-2x-1\right)\left(x+2\right)+x^2+x+2}{\left(x+2\right)^2}=\dfrac{-x^2-4x}{\left(x+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Dấu của y':

undefined

Hàm đồng biến trên các khoảng \(\left(-4;-2\right)\) và \(\left(-2;0\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-4\right)\) và \(\left(0;+\infty\right)\)

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2023 lúc 11:05

loading...  loading...  loading...  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2018 lúc 16:17

TXĐ: (- ∞ ; 6 ) ∪ ( 6 ; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y’ = 0 ⇔ x = 3 hoặc x = -3

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đồng biến trên các khoảng (- ∞ ; -3), (3; + ∞ ), nghịch biến trên các khoảng (-3; − 6  − 6 ), ( 6 ; 3).

Trọng Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 14:17

a: Hàm số đồng biến trên R

b: Hàm số nghịch biến trên R

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 7 2018 lúc 13:12

Chọn A

 là tam thức bậc hai có ∆' = m2.

Do đó: y có cực đại cực tiểu ⇔ y’ có hai nghiệm phân biệt

 

⇔ g(x) có hai nghiệm phân biệt ⇔ ∆' > 0 ⇔ m ≠ 0. (1)

Khi đó, y’ có các nghiệm là: 1 ± m

→ tọa độ các điểm cực trị của đồ thị hàm số là

Để A và B cách đều gốc tọa độ khi và chỉ khi :

Đối chiếu với điều kiện (1), ta thấy chỉ  m = ± 1 2  thỏa mãn yêu cầu bài toán.

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 4 2019 lúc 3:56

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 8 2018 lúc 10:51

Ta có y’=12x2+2mx-3.

Do ∆ ' = m 2 + 36 > 0 ,   ∀ m ∈ ℝ   nên hàm số luôn có hai điểm cực trị x1; x2.

Theo Viet, ta có  x 1 + x 2 = - m 6 x 1 x 2   = - 1 4

Mà x1+4x2=0 suy ra

 

Chọn A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2017 lúc 8:01

Chọn D