bt7: cho hai đa thức
M=3xyz-3x^2+5xy-1 và N=5x^2=xyz-5xy+3-y
tính M-N ; M-N ; N-M
M=3xyz-3x³+5xy-1 n=5x²+xyz-5xy+3-y
Tính M+N, M-N
\(M + N = (3xyz – 3x^2 + 5xy – 1) + (5x^2 + xyz – 5xy + 3 – y)\)
\(= 3xyz – 3x^2 + 5xy – 1 + 5x^2 + xyz – 5xy + 3 – y\)
\(= (3xyz + xyz)+( –3x^2 + 5x^2) + (5xy – 5xy) – y + ( – 1+3)\)
\(= 4xyz + 2x^2 – y + 2\)
\(M – N = (3xyz – 3x^2 + 5xy – 1) – (5x^2 + xyz – 5xy + 3 – y)\)
\(= 3xyz – 3x^2 + 5xy – 1 – 5x^2 – xyz + 5xy – 3 + y\)
\(= (– 3x^2 – 5x^2) + (3xyz – xyz) + (5xy + 5xy) + y +(– 1 – 3)\)
\(= –8x^2 + 2xyz + 10xy + y – 4.\)
\(N – M = (5x^2 + xyz – 5xy + 3 – y) – (3xyz – 3x^2 + 5xy – 1)\)
\(= 5x^2 + xyz – 5xy + 3 – y – 3xyz + 3x^2 – 5xy +1\)
\(= (5x^2 + 3x^2)+ (xyz – 3xyz)+( – 5xy – 5xy) + (3 + 1 )– y\)
\(= 8x^2 – 2xyz – 10xy – y + 4.\)
M+N=(3xyz-3x3+5xy-1)+(5x2+xyz-5xy+3-y)
=3xyz-3x3+5xy-1+5x2+xyz-5xy+3-y
=(3xyz+xyz)+(-3x3)+(5xy-5xy)+(-1+3)+5x2-y
= 4xyz+(-3x3)+2+5x2-y
M-N=(3xyz-3x3+5xy-1)-(5x2+xyz-5xy+3-y)
=3xyz-3x3+5xy-1-5x2-xyz+5xy-3+y
=(3xyz-xyz)+(-3x3)+(5xy+5xy)+(-1-3)-5x2+y
= 2xyz+(-3x3)+10xy+(-4)-5x2+y
BÀI 2: Cho hai đa thức : M = 3xyz - 3x^2 +5xy-1 và N = 5x^2+xyz-5xy+3. Tính M+N;M-N
M+N
\(=3xyz-3x^2+5xy-1+5x^2+xyz-5xy+3\)
\(=2x^2+4xyz+2\)
M-N
\(=3xyz-3x^2+5xy-1-5x^2-xyz+5xy-3\)
\(=-8x^2+2xyz+10xy-4\)
Cho hai đa thức:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y.
Tính M + N; M - N; N - M.
Ta có:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy - 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= ( 3xyz + xyz ) + ( -3x2 + 5x2 ) + ( 5xy - 5xy ) + ( -1 + 3 ) - y
= 4xyz + 2x2 + 2 - y
Cho hai đa thức :
\(M=3xyz-3x^2+5xy-1\)
\(N=5x^2+xyz-5xy+3-y\)
Tính :
\(M+N;M-N;N-M\)
Ta có:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x 2+ xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= ( 5x2 + 3x2 ) + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
Cho M = 3xyz - 3x2 +5xy - 1 và N = 5x2 + xyz - 5xy + 3 - y
Tính:
a) M + N
b) M - N
c) N - M
cho 2 đa thức : M= 3xyz - 3x2 + 5xy -1
N = 5x2 + xyz - 5xy + 3 - y
a) tính M+N
b) tính N-M
M + N = (3xyz -3x2+5xy-1)+(5x2+xyz-5xy+3 - y)
= 3xyz - 3x2 +5xy-1+5x2+xyz-5xy+3 - y
= (3xyz + xyz)+ (5x2 - 3x2)+ (5xy-5xy)+(3-1)-y
= 4xyz + 2x2 + 2 - y
M - N = (3xyz -3x2+5xy-1)-(5x2+xyz-5xy+3 - y)
= 3xyz -3x2+5xy-1- 5x2 -xyz+5xy-3 + y
= (3xyz-xyz)+(-3x2-5x2)+(5xy+5xy)+(-1-3) + y
= 2xyz + (-8x2)+10xy+(-4)+y
=2xyz - 8x2+10xy - 4 +y
theo mk là zầy!!!!
a) M+N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= (3xyz+xyz)+(-3x2+5x2)+(5xy-5xy)-y+(-1+3)
= 4xyz + 2x2 - y + 2
duyệt đi
Phan Văn Hiếu câu b) là N-M mà bn???
duyệt đi
Cho hai đa thức:
M = 3xyz – 3x2 + 5xy – 1
N = 5x2 + xyz – 5xy + 3 – y.
Tính M + N; M – N; N – M.
M + N = (3xyz – 3x2 + 5xy – 1) + (5x2 + xyz – 5xy + 3 – y)
= 3xyz – 3x2 + 5xy – 1 + 5x2 + xyz – 5xy + 3 – y
= (3xyz + xyz)+( –3x2 + 5x2) + (5xy – 5xy) – y + ( – 1+3)
= 4xyz + 2x2 – y + 2
M – N = (3xyz – 3x2 + 5xy – 1) – (5x2 + xyz – 5xy + 3 – y)
= 3xyz – 3x2 + 5xy – 1 – 5x2 – xyz + 5xy – 3 + y
= (– 3x2 – 5x2) + (3xyz – xyz) + (5xy + 5xy) + y +(– 1 – 3)
= –8x2 + 2xyz + 10xy + y – 4.
N – M = (5x2 + xyz – 5xy + 3 – y) – (3xyz – 3x2 + 5xy – 1)
= 5x2 + xyz – 5xy + 3 – y – 3xyz + 3x2 – 5xy +1
= (5x2 + 3x2)+ (xyz – 3xyz)+( – 5xy – 5xy) + (3 + 1 )– y
= 8x2 – 2xyz – 10xy – y + 4.
Chú ý: Vì M – N và N – M là hai đa thức đối nhau nên
N – M = 8x2 – 2xyz – 10xy – y + 4
(Ta chỉ cần đổi dấu mỗi hạng tử của đa thức M – N là thu được N – M).
Cho hai đa thức :
M=3xyz-3x2-5xy-1
N=5x2+xyz-5xy+3-y .
Tính M+N ;M-N ; N-M
\(M+N=2x^2+4xyz-10xy+2-y\)
\(M-N=-8x^2+2xyz-4+y\)
\(N-M=8x^2-2xyz+4-y\)
M+N=2x2+4xyz−10xy+2−y
M−N=−8x2+2xyz−4+y
N−M=8x2−2xyz+4−y
M+N=2x2+4xyz−10xy+2−y
M−N=−8x2+2xyz−4+y
N−M=8x2−2xyz+4−y
M+N= (3xyz-3x+5xy-1)+(5x+xyz-5xy+3-y)
=? có làm dc ko
Quá dễ
Cho hai đa thức:
\(M=3xyz-3x^2+5xy-1\\ N=5x^2+xyz-5xy+3-y\)
Tính \(M+N;M-N;N-M\)
Các bạn làm phép trừ thì nhớ đổi đúng dấu giúp nha ( mình sai chỗ này rất nhiều )
Mình làm tách riêng nha:
a) \(M+N\)
\(M+N=\left(3xyz-3x^2+5xy-1\right)+\left(5x^2+xyz-5xy+3-y\right)\)
\(M+N=\left(3xyz+xyz\right)+\left(-3x^2+5x^2\right)+\left(5xy-5xy\right)+\left(-1+3\right)-y\)
\(M+N=4xyz+2x^2+2-y\)
b) \(M-N\)
\(M-N=3xyz-3x^2+5xy-1-5x^2-xyz+5xy-3+y\)
\(=\left(3xyz-xyz\right)+\left(-3x^2-5x^2\right)+\left(5xy+5xy\right)+\left(-1-3\right)+y\)
\(=2xyz-8x^2+10xy-4+y\)
\(\)
M + N= 3xyz - 3x2+ 5xy - 1 + 5x2 + xyz - 5xy+ 3 - y
= 3xyz + xyz - 3x2 + 5x2 + 5xy - 5xy - 1 + 3 - y
= 4xyz + 2x2 + 2 - y
M - N= (3xyz - 3x2 + 5xy - 1) - ( 5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy -1 - 5x2 - xyz + 5xy -3 + y
= 3xyz - xyz - 3x2 - 5x2 + 5xy + 5xy -1 - 3 + y
= 2xyz - 8x2 + 10xy - 4 + y
N - M= (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2+ 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy + 3 + 1 - y
= 8x2 - 2xyz - 10xy + 4 - y
Chúc bạn học tốt