Cho a,b,c là các số nguyên thỏa mãn a+b+c=4046 .CMR P=(a+b)(b+c)(c+a)-6abc chia hết cho 14
2.Cho a, b, c là các số dương thỏa mãn a + b + c = 4046 Ching minh rang P = (a + b)(b + c)(c + a) - 6abc chia hết cho 14
Cho 3 số nguyên dương a,b,c thỏa mãn a^3 + b^3 +c^3 chia hết cho 14. CMR abc cũng chia hết cho 14
Cho a,b,c là các số nguyên thỏa mãn:
( a - b)( b - c)( c - a) = a + b + c
CMR: a + b + c chia hết cho 27.
Cho các số nguyên a,b,c thỏa mãn ab( a- b) + ca( c - a)= a+ b+ c. Cmr: a+ b+ c chia hết cho 27
Với ạ,b,c là các số nguyên thỏa mãn a+b+c=2112.cmr a^3+b^3+c^3 chia hết cho 6
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
cho các số nguyên a,b,c thỏa mãn: A= a^2+b^2+ab+3(a+b)+2018 chia hết cho 5.CMR a-b chia hết cho 5.
cho a,b,c là các số nguyên thỏa mãn: \(a+b=c^3-2018c\). CMR: A= \(a^3+b^3+c^3\) chia hết cho 6
Cho các số nguyên a, b, c, d thỏa mãn a3+b3=5(c3+7d3). CMR a+b+c+d chia hết cho 6
Cho a,b,c là các số nguyên thỏa mãn a2 + b2 = c2 . Cmr a.b chia hết cho 12
+ c2 chia hết 3 => có 2 số chia hết 3
+ c2 chia 3 du 1 => có ít nhất 1 số chia hết 3
=> ab chia hết 3 (1)