chờ a,b, c là các số không âm đó bằng c,bc=4a,ac=9b.tính giá trị biểu thức M=a+b+c+2005
Cho a,b,c là các số thực không âm thỏa mãn a+b+c=1.Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=ac+bc-2022ab
\(Q=ac+bc-2022ab\le ac+bc=c\left(a+b\right)\le\dfrac{1}{4}\left(c+a+b\right)^2=\dfrac{1}{4}\)
\(Q_{max}=\dfrac{1}{4}\) khi \(\left\{{}\begin{matrix}a+b+c=1\\ab=0\\c=a+b\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;\dfrac{1}{2};\dfrac{1}{2}\right);\left(\dfrac{1}{2};0;\dfrac{1}{2}\right)\)
\(Q=c\left(a+b\right)-2022ab\ge c\left(a+b\right)-\dfrac{1011}{2}\left(a+b\right)^2\)
\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}\left(1-c\right)^2\)
\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}c\left(c-2\right)-\dfrac{1011}{2}\)
\(Q\ge\dfrac{c\left(1011+1013\left(1-c\right)\right)}{2}-\dfrac{1011}{2}\ge-\dfrac{1011}{2}\)
\(Q_{min}=-\dfrac{1011}{2}\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)
cho 3 số a,b,c khác 0 thỏa mãn ab=c ,bc=4a,ac=9b.Tính a,b,c
a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6a có:
ab=c (1)
bc=4a (2)
ac=9b (3)
Nhân (1), (2) và (3) với nhau, ta được:
ab.bc.ac=c.4a.9b
(abc)2=36.abc
(abc)2:abc=36
abc=36
=> ab=36:c ; ac=36:b ; bc=36:a
Ta có:
ab=c => 36:c=c => c.c=36 => c2=36
Vậy c∈{-6;6} mà c dương nên c=6
bc=4a => 36:a=4a => 36:a:4=a => 36:4=a.a => 9=a2
Vậy a∈{-3;3} mà a dương nên a=3
ac=9b => 36:b=9b => 36:b:9=b => 36:9=b.b => 4=b2
Vậy b∈{-2;2} mà b dương nên b=2
Vậy
a=3
b=2
c=6
Ta có thể giải bài toán này bằng cách sử dụng phương pháp điều chỉnh biểu thức P để biểu thức này có thể được phân tích thành tổng của các biểu thức có dạng a(x-y)+b(y-z)+c(z-x), trong đó x,y,z là các số thực không âm. Khi đó, ta có:
P = ab + bc - ca = a(b-c) + b(c-a) + c(a-b) = a(-c+b) + b(c-a) + c(-b+a) = a(x-y) + b(y-z) + c(z-x), với x = -c+b, y = c-a và z = -b+a
Do đó, để tìm giá trị lớn nhất của P, ta cần tìm các giá trị lớn nhất của x, y, z. Ta có:
x = -c+b ≤ b, vì c ≥ 0 y = c-a ≤ c ≤ 2022, vì a+b+c = 2022 z = -b+a ≤ a, vì b ≥ 0
Vậy giá trị lớn nhất của P là:
P_max = ab + bc - ca ≤ b(2022-a) + 2022a = 2022b
Tương tự, để tìm giá trị nhỏ nhất của P, ta cần tìm các giá trị nhỏ nhất của x, y, z. Ta có:
x = -c+b ≥ -2022, vì b ≤ 2022 y = c-a ≥ 0, vì c ≤ 2022 và a ≥ 0 z = -b+a ≥ -2022, vì a ≤ 2022
Vậy giá trị nhỏ nhất của P là:
P_min = ab + bc - ca ≥ (-2022)a + 0b + (-2022)c = -2022(a+c)
Do đó, giá trị lớn nhất của P là 2022b và giá trị nhỏ nhất của P là -2022(a+c).
Cho biểu thức 4a(a+b)(a+b+c)(a+c)+b^2c^2 luôn có giá trị không âm với moi giá trị của a,b,c
\(A=4a\left(a+b\right)\left(a+b+c\right)\left(a+c\right)+b^2c^2\)
\(=4\left[a\left(a+b+c\right)\right]\left[\left(a+b\right)\left(a+c\right)\right]+b^2c^2\)
\(=4\left[a^2+ab+ac\right]\left[a^2+ac+ab+bc\right]+b^2c^2\)
Đặt \(a^2+ab+ac=t\)
Khi đó:
\(A=4t\left[t+bc\right]+b^2c^2\)
\(=4t^2+4tbc+b^2c^2\)
\(=\left(2t+bc\right)^2=\left(2a^2+2ab+2ac+bc\right)^2\ge0\forall a;b;c\)
Cho các số không âm a,b,c thỏa mãn không có hai số nào đồng thời bằng 0 và a2+b2+c2=2(ab+bc+ac). Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\)
cho ba số thực không âm a,b,c thỏa mãn ab+ac+bc=1 .Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a^2+b^2+c^2+3}{a+b+c-abc}\)
Lời giải:
Đặt $a+b+c=p; ab+bc+ac=q=1; abc=r$
$p,r\geq 0$
Áp dụng BĐT AM-GM: $p^2\geq 3q=3\Rightarrow p\geq \sqrt{3}$
$a,b,c\leq 1\Leftrightarrow (a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow p+r\leq 2\Rightarrow p\leq 2$
$P=\frac{(a+b+c)^2-2(ab+bc+ac)+3}{a+b+c-abc}=\frac{(a+b+c)^2+1}{a+b+c-abc}=\frac{p^2+1}{p-r}$
Ta sẽ cm $P\geq \frac{5}{2}$ hay $P_{\min}=\frac{5}{2}$
$\Leftrightarrow \frac{p^2+1}{p-r}\geq \frac{5}{2}$
$\Leftrightarrow 2p^2-5p+2+5r\geq 0(*)$
---------------------------
Thật vậy:
Áp dụng BĐT Schur thì:
$p^3+9r\geq 4p\Rightarrow 5r\geq \frac{20}{9}p-\frac{5}{9}p^3$
Khi đó:
$2p^2-5p+2+5r\geq 2p^2-5p+2+\frac{20}{9}p-\frac{5}{9}p^3=\frac{1}{9}(2-p)(5p^2-8p+9)\geq 0$ do $p\leq 2$ và $p\geq \sqrt{3}$
$\Rightarrow (*)$ được CM
$\Rightarrow P_{\min}=\frac{5}{2}$
Dấu "=" xảy ra khi $(a,b,c)=(1,1,0)$ và hoán vị
cho bốn số a,b,c,d\(\in\)Q(a,b,c,d khác 0)
a)bốn biểu thức ad;-bc;-ac;-bd có thể cùng có giá trị âm được không?
b)bốn biểu thức:
ac-cd-ad;ab-a2+cd;-ab+bc-ac;-bc+ad-b2 có thể cùng có giá trị dương được không?
Cho ∫ 0 8 1 + 1 + x d x = a - b c với a,b,c là các số nguyên dương và a c tối giản. Giá trị biểu thức a+b+c bằng
A. 111.
B. 239.
C. 255.
D. 367.
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .