cho a,b là 2 số tự nhiên :thỏa (2a+b)
chứng tỏ (2b +a):3
Cho a,b là các số tự nhiên thỏa mãn: 2a2-3b2=b-a
chứng minh: 2a+2b+1 là số chính phương
Cho a,b là các số tự nhiên khác 0, biết (4a+b)chia hết cho 3. chứng tỏ (2a+2b) chia hết cho 3
Cho 2 số tự nhiên a, b thỏa mãn \(2a^2+a=3b^2+b\). Chứng minh rằng:
\(2a+2b+1\)là số chính phương.
Ta có: \(2a^2+a=3b^2+b\)
\(\Leftrightarrow\left(2a^2-2b^2\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(a-b\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
*CM 2a+2b+1 và a-b nguyên tố cùng nhau
=> 2a+2b+1 cũng là 1 SCP
Ta có:
\(2a^2+a=3b^2+b\)
\(\Leftrightarrow2a^2-2b^2+a-b=b^2\)
\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)
Ta có:
Đặt \(d=\left(a-b,2a+2b+1\right)\).
\(\Rightarrow\hept{\begin{cases}a-b⋮d\\2a+2b+1⋮d\end{cases}}\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2⋮d^2\Rightarrow b⋮d\)
\(\Rightarrow\left(a-b\right)+b=a⋮d\)
\(\Rightarrow\left(2a+2b+1\right)-2a-2b=1⋮d\Rightarrow d=1\).
Do đó \(a-b,2a+2b+1\)là hai số chính phương.
2a2 + a = 3b2 + b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2
=> (a - b). (2a + 2b + 1) = b2 (1)
Gọi d = ƯCLN (a-b; 2a + 2b + 1)
=> a - b chia hết cho d và 2a + 2b + 1 chia hết cho d
=> b2 = (a - b). (2a + 2b + 1) chia hết cho d2
=> b chia hết cho d
Lại có 2(a - b) - (2a + 2b + 1) chia hết cho d => -4b - 1 chia hết cho d
=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau (2)
(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương
a) Tìm 2 số a,b ∈ N thỏa mãn 12a + 36b = 3211
b) Cho (2a+7b) ⋮ 3 (a,b ∈ N ) . Chứng tỏ (4a+2b) ⋮ 3
a)12a + 36b = 2(6a + 18b) chia hết cho 2
3211 không chia hết cho 2
=> không tìm được a,b thỏa mãn đề.
b)Đặt A=2a+7b
B=4a+2b
xét hiệu:2A-B=2.(2a+7b)-(4a+2b)
=4a+14b-4a-2b
=12b
Vì A ⋮3 nên 2a⋮3;12b⋮3
⇒B⋮3 hay 4a+2b ⋮3(đpcm)
Cho a,b là các số tự nhiên thỏa mãn 2a2+a = 3b2+b.
CMR: a-b và 2a+2b+1 đều là số chính phương ?
2a2 + a = 3b2 + b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2
=> (a - b). (2a + 2b + 1) = b2 (1)
Gọi d = ƯCLN (a-b; 2a + 2b + 1)
=> a - b chia hết cho d và 2a + 2b + 1 chia hết cho d
=> b2 = (a - b). (2a + 2b + 1) chia hết cho d2
=> b chia hết cho d
Lại có 2(a - b) - (2a + 2b + 1) chia hết cho d => -4b - 1 chia hết cho d
=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau (2)
(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương
có rùi nè, 4b đó: Cho a+b+c=0.
Tính: 1/(b^2+c^2-a^2)+1/(a^2+c^2-b^2)+1/(a^2+b^2-c^2). đó bài này đó
cho các số nguyên a và b [a>b] thỏa mãn :
[a-b].[2a+2b+1]=b^2
chứng tỏ [a-b] là số chính phương
Cho các số tự nhiên a,b thỏa mãn điều kiện a2 + b2 + 4 = 2 ( ab + 2a + 2b ). Chứng minh rằng \(\frac{a}{2}\)là số chính phương
Ta có:
\(a^2+b^2+4=2ab+4a+4b\)
\(\Rightarrow a^2+b^2+4-2ab-4b+4a=8a\)
\(\Rightarrow\left(a-b+2\right)^2=8a\)
\(\Rightarrow\frac{a}{2}=\frac{\left(a-b+2\right)^2}{16}=\left(\frac{a-b+2}{4}\right)^2\)
=> \(\frac{a}{2}\)là số chính phương.
Sao lại bằng 8a chỗ đấy ạ. Bạn giải thích hộ mình với
\(a^2+b^2+4=2ab+4a+4b\)
Chuyển vế:
\(a^2+b^2+4-2ab-4b=4a\)
Thêm 4a vào 2 vế
\(a^2+b^2+4-2ab-4b+4a=4a+4a\)
\(a^2+b^2+4-2ab-4b+4a=8a\)
Cho a và b là hai số tự nhiên thỏa mãn 5a+2b và 13a+ 8b chia hết cho 1995. Chứng tỏ rằng a và b đềuchia hết cho 1995
a, Cho a;b€N thỏa mãn: (11a+2b)chia hết cho 12.Chứng tỏ a+34b chia hết cho 12.
b, Cho a;b€N thỏa mãn: (2a+7b) chia hết cho 3.Chứng tỏ (4a+2b) chia hết cho 3.
Giúp mình nha!!!
Giả sử (4a+2b)⋮3(4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Vậy (4a+2b)⋮3