a^5 - b^5 ≥ ab^4 - a^4b (với a < b) Giúp mình với ạ
Tính giá trị biểu thức
A=(9a^5-ab^4-18a^4b+2b^5)/(3a^3b^2+ab^4-6a^2b^3-2b^5) với a/b=2/3
Bạn ơi giúp mình với nhé mình cảm ơn nhiều!!!!!!!!
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)
1. (2x+5)^2- 4.(ab+2)^2
2. 4b^2c^2-(b^2+c^2-a^2)^2
3. (ax+by)^2 - (ay+bx)^2
Ai giúp mình với. Cảm ơn nhiều ạ!!!
Bài 1: Tìm x là số tự nhiên, biết:
1. Cho A = 21 + 22 + 23 + ....... + 22022
2. Cho B = 5 + 52 + 53 +...........+ 52022
a) Tính A,B
b) Tìm x để A + 2 = 2x
Tìm x để biết 4B + 5 = 5x
Nhanh giúp mình với ạ!
a) Ta có A = 21 + 22 + 23 + ... + 22022
2A = 22 + 23 + 24 + ... + 22023
2A - A = ( 22 + 23 + 24 + ... + 22023 ) - ( 21 + 22 + 23 + ... + 22022 )
A = 22023 - 2
Lại có B = 5 + 52 + 53 + ... + 52022
5B = 52 + 53 + 54 + ... + 52023
5B - B = ( 52 + 53 + 54 + ... + 52023 ) - ( 5 + 52 + 53 + ... + 52022 )
4B = 52023 - 5
B = \(\dfrac{5^{2023}-5}{4}\)
b) Ta có : A + 2 = 2x
⇒ 22023 - 2 + 2 = 2x
⇒ 22023 = 2x
Vậy x = 2023
Lại có : 4B + 5 = 5x
⇒ 4 . \(\dfrac{5^{2023}-5}{4}\) + 5 = 5x
⇒ 52023 - 5 + 5 = 5x
⇒ 52023 = 5x
Vậy x = 2023
Bài 4: Tìm x là số tự nhiên biết:
Cho B =5 + 52 + 53 + ........ + 52022
a) Tính B
b) Tìm x để 4B + 5 = 5x
Nhanh giúp mình ạ
a) \(B=5+5^2+5^3+...+5^{2022}\)
\(\Rightarrow5B=5^2+5^3+5^4+...+5^{2023}\)
\(\Rightarrow4B=5^{2023}-5\)
b) \(4B+5=5^X\)
Hay \(5^{2023}-5+5=5^X\)
\(5^{2023}=5^x\)
\(\Rightarrow x=2023\)
B = 5 + 52 + 53 +...+ 52022
5.B = 52 + 53 +....+ 52023
5B- B = 52023 - 5
4B = 52023 - 5
b, 4B + 5 = 5\(^x\) ⇒ 52023 - 5 + 5 = 5\(^x\)
5\(^{2023}\) = 5\(x\)
\(x\) = 2023
Nguyễn Thị Thương Hoài
Cô ơi, x = 2023 vì x nằm ở mũ nha cô.
Giúp mình giải bài này với :
\(\dfrac{2a-4b}{a-5b}\)với\(\dfrac{a}{b}\)=\(\dfrac{3}{5}\)
Ta có: \(\dfrac{a}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3k\\b=5k\end{matrix}\right.\)
Ta có: \(\dfrac{2a-4b}{a-5b}\)
\(=\dfrac{2\cdot3k-4\cdot5k}{3k-5\cdot5k}=\dfrac{6k-20k}{3k-25k}\)
\(=\dfrac{-14k}{-22k}=\dfrac{7}{11}\)
a) Cho a>b C/m 5a-3>5b-3
b) Cho a>bC/m 3-4a<3-4b
c) Cho a<b So sánh 5-2a và 5-2b
d) Cho 3-4a>3-4b So sánh a và b
GIÚP MÌNH VỚI MÌNH TICK CHO
Tìm a,b,c biết:
3.a=4.b, 6.b=5.c và a+b+c=106
Bạn giúp mình giả với ạ!
Rút gọn các biểu thức sau :
1, \(\sqrt{4\left(a-4\right)^2}\) ( với a \(\ge\) 4 )
2, \(\sqrt{9\left(b-5\right)^2}\) ( với b < 5 )
Giúp mình vs mình cần gấp ạ , cảm ơn nhìuuu 🌷
\(1,\sqrt{4\left(a-4\right)^2}\left(dkxd:a\ge4\right)\)
\(=\sqrt{4}.\sqrt{\left(a-4\right)^2}\)
\(=\sqrt{2^2}.\left|a-4\right|\)
\(=2\left(a-4\right)\)
\(=2a-8\)
\(2,\sqrt{9\left(b-5\right)^2}\left(dkxd:b< 5\right)\)
\(=\sqrt{9}.\sqrt{\left(b-5\right)^2}\)
\(=\sqrt{3^2}.\left|b-5\right|\)
\(=3\left(-b+5\right)\)
\(=-3b+15\)
Giúp mình với :Phân tích đa thức sau thành nhân tử:
a,a^2+b^2-a^2.b^2+ab-a-b-1
b,b^4-9a^2-4b^2+4
c,3x^6-4x^5+2x^4-8x^3+2x^2-4x+3
d,x^4+3x^3-14x^2-6x+4
e,2y^4+12y^2-14
2/ (b4 - 4b2 + 4) - 9a2 = (b2 - 2)2 - 9a2 = (b2 - 2 + 3a)(b2 - 2 - 3a)
3/ (x2 +1)(x2 + x + 1)[x + (√13 - 7)/6][3x - (√13 + 7)/2]
bạn viết hẳn cách làm câu 3 cho mình đc k mình k hiểu lắm =)
chứng minh cái đống này giúp mình với mai mình nộp rồi
a)(a^4+b^4)(a^6+b^6)<_2(a^10+b^10)
b)a^2/4+2b^2+2c^2+1>=ab-ac+2bc+2b
c)a^2+4b^2+4c^2+4ac>=4ab+8bc
d)4a^4+5a^2>=8a^3+2a-1
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)