Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhóc Karry Anh
Xem chi tiết
Ko Nho Tao
Xem chi tiết
Nguyễn Huy Thắng
30 tháng 8 2017 lúc 21:49

Ad C-S

\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2\right)^2}{a}+\dfrac{\left(x^2\right)^2}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}=\dfrac{1}{a+b}\)

Học Phạm
Xem chi tiết
Trần Thanh Phương
5 tháng 6 2019 lúc 6:26

Dạng bài tập chứng minh dạng tổng quát rồi suy ra đpcm

Bài làm :

Xét dạng tổng quát : Cho \(\hept{\begin{cases}a+b=x+y\\a^4+b^4=x^4+y^4\end{cases}}\)

\(a^k+b^k=x^k+y^k\)(1)

+) Xét \(k=1\)ta có (1) hiển nhiên đúng

+) Xét \(k=2\)ta cũng thu được (1) đúng

Giả sử (1) đúng với \(k=n\)

Ta cần chứng minh (1) đúng với \(k=n+1\)

Khi đó : \(\left(1\right)\Leftrightarrow a^{n+1}+b^{n+1}=x^{n+1}+y^{n+1}\)

Xét \(a^{n+1}+b^{n+1}=\left(a^n+b^n\right)\left(a+b\right)-a^nb-ab^n\)

\(=\left(a^n+b^n\right)\left(a+b\right)-ab\left(a^{n-1}+b^{n-1}\right)\)

\(=\left(x^n+y^n\right)\left(x+y\right)-ab\left(x^{n-1}+y^{n-1}\right)\)(*)

Ta có \(x^2+y^2=a^2+b^2\Leftrightarrow\left(x+y\right)^2-2xy=\left(a+b\right)^2-2ab\)

\(\Leftrightarrow-2xy=-2ab\Leftrightarrow xy=ab\)

Khi đó : (*)\(\Leftrightarrow\left(x^n+y^n\right)\left(x+y\right)-xy\left(x^{n-1}+y^{n-1}\right)=x^{n+1}+y^{n+1}\)

Ta có đpcm

Xem thêm : Câu hỏi của Nguyễn Thu Huyền - Toán lớp 8 | Học trực tuyến

Nguyễn Thu Huyền
Xem chi tiết
Akai Haruma
23 tháng 9 2018 lúc 23:34

Lời giải:

Quy nạp. Ta chứng minh tổng quát rằng \(a^k+b^k=x^k+y^k(*)\) với \(k\in\mathbb{N}\)

Với $k=1,k=2$: hiển nhiên theo giả thiết.

............

Giả sử điều \((*)\) đúng tới $k=n$. Ta sẽ chứng minh nó cũng đúng với $k=n+1$. Tức là \(a^{n+1}+b^{n+1}=x^{n+1}+y^{n+1}\)

Thật vậy:

\(a^{n+1}+b^{n+1}=(a^n+b^n)(a+b)-a^nb-ab^n\)

\(=(x^n+y^n)(x+y)-ab(a^{n-1}+b^{n-1})\)

\(=(x^n+y^n)(x+y)-ab(x^{n-1}+y^{n-1})\)

\(a^2+b^2=x^2+y^2\Rightarrow (a+b)^2-2ab=(x+y)^2-2xy\)

Mà $a+b=x+y$ nên \(2ab=2xy\Rightarrow ab=xy\)

\(\Rightarrow a^{n+1}+b^{n+1}=(x^n+y^n)(x+y)-xy(x^{n-1}+y^{n-1})=x^{n+1}+y^{n+1}\)

Quy nạp hoàn thành. Ta luôn có $(*)$. Thay $k=2018$ ta có đpcm.

Bùi_Thị _Oanh123
Xem chi tiết
Phạm Tường Lan Vy
Xem chi tiết
nguyenthangthao
Xem chi tiết
Tom Phan
Xem chi tiết
Trần Kim Hữu
22 tháng 10 2017 lúc 7:00

Ta có: a+b=x+y

=> a=x=y=b

vậy a2018+b2018=x2018+y2018

nguyễn danh bảo
Xem chi tiết