Tìm giá trị nhỏ nhất của \(A=3x^2+11y^2-2xy-2x+6y-1\)
Tìm giá trị nhỏ nhất của B=x^2+2y^2-2xy+2x-6y+10
Ta có: B = x2 + 2y2 - 2xy + 2x - 6y + 10
B = (x2 - 2xy + y2) + 2x - 6y + y2 + 10
B = (x - y)2 + 2(x - y) + 1 - 4y + y2 + 4 + 5
B = (x - y + 1)2 + (y - 2)2 + 5 \(\ge\)5 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y-1\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy MinB = 5 <=> x = 1 và y = 2
tìm giá trị nhỏ nhất của biểu thức M=2x^2+2y^2-6x-6y+2xy+11
Lời giải:
$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$
$=(x+y)^2+x^2+y^2-6x-6y+11$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$
$\Leftrightarrow x=y=1$
giúp mình với ạ
Bài 1: Tìm giá trị nhỏ nhất A= (x² +5x)² + 10x² +50x +124
B= (x +2)(x+3)(X-7)(x-8) – 2021
C= \(x^4\) +6x³ +7x² +6x +11
D= 2x² +20 +10y² +2xy – 6x +6y +123
F= (x+3)²(3x+8)(3x+10) -201
К- (2х-1)(х-1)х-3)(2x+3) + 19
Tìm giá trị nhỏ nhất của biểu thức Q= x2+2y2+2xy - 2x - 6y +2015
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)
\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi x=-3;y=4
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=\left(x^2+y^2+1+2xy-2x-2y\right)+\left(y^2-4y+4\right)+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)
Dâu'=' xảy ra khi và chỉ khi
\(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Vậy giá trị nhỏ nhất của Q bằng 2010, xảy ra khi x=-1,y=2
\(A=\left(x^2+y^2+36-2xy-12x+12y\right)+5y^2-10y+5+109\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+109\ge109\)
\(A_{min}=109\) khi \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của các biểu thức sau:
A = \(x^2+4x+5\).
B = \(x^2+10x-1\).
C = \(5-4x+4x^2\).
D = \(x^2+y^2-2x+6y-3\).
E = \(2x^2+y^2+2xy+2x+3\).
\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=-2\)
\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)
Dấu \("="\Leftrightarrow x=-5\)
\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(A=x^2+4x+5\)
\(=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
\(C=4x^2-4x+5\)
\(=4x^2-4x+1+4\)
\(=\left(2x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Tìm giá trị( LN ) giá trị nhỏ nhất ( gtnn) của các biểu thức sau:
A) A= x^2+3x+1
B) B= 2x^2+6x+y^2+2xy+12
C) C= 2x-x^2
\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)
Tìm giá trị nhỏ nhất của biểu thức:
\(3y^2+x^2+2xy+2x+6y+2017\)
\(3y^2+x^2+2xy+2x+6y+2017=x^2+2x\left(y+1\right)+\left(y+1\right)^2+\left(2y^2+4y+2\right)+2014\)
\(=\left(x+y+1\right)^2+2\left(y+1\right)^2+2014\ge2014\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y+1=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy BT đạt GTNN bằng 2014 tại (x;y) = (0;-1)
giá trị nhỏ nhất của biểu thức 2x^2+2y^2-2xy-6y+21