Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loancute
Xem chi tiết
gãi hộ cái đít
21 tháng 5 2021 lúc 7:35

Ta có: \(P=ab+\dfrac{4}{ab}+4\ge2\sqrt{ab.\dfrac{4}{ab}+4}=8\)

Dấu '=' xảy ra <=> \(\left\{{}\begin{matrix}ab=2\\1\le a,b\le2\end{matrix}\right.\)

Lại có: \(1\le a\le2,1\le b\le2\)

\(\Rightarrow1\le ab\le4\Leftrightarrow\left(ab-1\right)\left(ab-4\right)\le0\Leftrightarrow\left(ab\right)^2\le5ab-4\)

\(\Rightarrow P=\dfrac{\left(ab\right)^2+4ab+4}{ab}\le\dfrac{5ab-4+4ab+4}{ab}=9\)

Dấu '=' xảy ra <=> \(\left[{}\begin{matrix}ab=1\\ab=4\end{matrix}\right.\) và \(1\le a,b\le2\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=2\\a=b=1\end{matrix}\right.\)

Vậy \(Min_P=8\Leftrightarrow ab=2;1\le a,b\le2\)

\(Max_P=9\Leftrightarrow\left[{}\begin{matrix}a=b=1\\a=b=2\end{matrix}\right.\)

Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2021 lúc 8:12

\(f\left(x\right)=\left(2-x\right)\left(x+3\right)\le\dfrac{1}{4}\left(2-x+x+3\right)^2=\dfrac{25}{4}\)

\(f\left(x\right)_{max}=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)

GG boylee
Xem chi tiết
Luân Đào
Xem chi tiết
NBH Productions
30 tháng 1 2019 lúc 20:02

Với \(2\ge x,y\ge1\)

Ta có :

\(2x\ge2\ge y;2y\ge x\)

\(\Rightarrow\left(2x-y\right)\left(2y-x\right)\ge0\Leftrightarrow\dfrac{x^2+y^2}{xy}\le\dfrac{5}{2}\)

Ta lại có :

\(M=2+\dfrac{x^2+y^2}{xy}\le2\dfrac{5}{2}=\dfrac{9}{2}\)

Dấu ''='' khi có 1 số bằng 1 và 1 số bằng 2 .

#####Kaito#####

quangduy
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:25

Max thì đơn giản thôi em:

Do \(0\le m;n\le1\Rightarrow0< 2-mn\le2\)

\(\Rightarrow M=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{m+n+1}=2\)

\(M_{max}=2\) khi \(mn=0\)

Trang Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2021 lúc 16:34

Khi \(-5\le m\le-1\Rightarrow3m-2< 0\Rightarrow T=-3m+2\)

Hàm bậc nhất \(T=-3m+2\) có \(a=-3< 0\) nên nghịch biến trên R

\(\Rightarrow T_{max}=T\left(-5\right)=-3.\left(-5\right)+2=17\)

\(T_{min}=T\left(-1\right)=-3.\left(-1\right)+2=5\)

Pham Van Hung
Xem chi tiết
Lạnh Lùng Boy
18 tháng 2 2019 lúc 22:05

Tách M ra sẽ =x/x+x/y+y/x+y/y

=> M=1+1+x/y+y/x

x/y+y/x >= 2 (định lí cauchy)

=> M>=4.

Mà đề bài phải là tìm GTNN nhá !!!

Incursion_03
18 tháng 2 2019 lúc 22:09

Lạnh Lùng Boy sai rồi , nếu Cô-si thì x = y mà đề bài là  x < y -> dấu "=" không xảy ra , đề tìm max là đúng, đợi ít đang nghĩ

shitbo
19 tháng 2 2019 lúc 14:26

đề mak tìm min ai đăng lên lm J -__-

CT Hà Nhi
Xem chi tiết
Thanh Tùng DZ
29 tháng 1 2020 lúc 20:05

\(1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\) \(\Rightarrow a^2-3a+2\le0\Rightarrow a^2+2\le3a\)

\(\Rightarrow a+\frac{2}{a}\le3\)\(\Rightarrow\left(a+\frac{2}{a}\right)^2\le9\Rightarrow a^2+\frac{4}{a^2}\le5\)

Tương tự : \(b+\frac{2}{b}\le3\)\(b^2+\frac{4}{b^2}\le5\)

\(\Rightarrow a+\frac{2}{a}+a^2+\frac{4}{a^2}+b+\frac{2}{b}+b^2+\frac{4}{b^2}\le16\)

Áp dụng BĐT Cô-si,ta có : 

\(16=\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)+\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)\ge2\sqrt{\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)}\)

\(\Leftrightarrow8\ge\sqrt{\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)}\)

\(\Leftrightarrow A=\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)\le64\)

Vậy GTLN của A là 64 \(\Leftrightarrow\orbr{\begin{cases}a=b=1\\a=b=2\end{cases}}\)

Khách vãng lai đã xóa
Ngoc Nhi Tran
Xem chi tiết