Cho hình 43. Chứng minh rằng AI = IM.
Cho hình 43. Chứng minh rằng AI = IM.
ΔBDC có BE = ED và BM = MC
⇒ EM là đường trung bình của ΔBDC
⇒ EM // DC hay EM // DI.
ΔAEM có DI // EM (cmt) và AD = DE (gt)
⇒ IA = IM (Theo định lý 1)
Chứng minh rằng AI = IM : Hình 43 SGK Toán 8
cho hình 43.Chứng minh rằng AI=IM
△BDC có ED = EB
MB = MC
⇒ EM là đường trung bình của tam giác này (Theo định nghĩa: đoạn thẳng nối trung điểm hai cạnh của một tam giác là đường trung bình của tam giác đó) ⇒ ME//CD
△AME có DA = DE (gt)
DI//ME (cmt)
⇒ IA = IM (Theo định lí: đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ 3)
\(\Delta BDC\) có BE=ED và BM=MC
nên EM// CD
\(\Rightarrow DI//EM\)
\(\Delta AEM\) có AD=DE và DI//EM
nên AI//IM
Cho hình 43. Chứng minh AI = IM ?
∆BDC có BE = ED và BM = MC
nên EM // DC
==> DI // EM
∆AEM có AD = DE và DI // EM
==> AI = IM.
Trong tam giác BAC có: EM là ĐTB nên DC // EM
ta có: I ∈ DC => DI // EM (DC // EM)
=> I là TĐ của AM nên AI = IM
chứng minh rằng ai = im
∆BDC có BE = ED và BM = MC
nên EM // DC
Suy ra DI // EM
∆AEM có AD = DE và DI // EM
nên AI = IM.
Cho tam giác ABC. Qua trung điểm M của cạnh BC kẻ đường thẳng song song với AB, cắt AC tại N. Trên tia BA lấy điểm I sao cho BI = MN. Chứng minh rằng IM song song với AC
(Ai vẽ hình mình tick cho nha)
TA CÓ:
IM là cạnh chung
BI=MN(gt)
góc MIB=góc IMN (AB//MN)
TAM giác IBM=Tam giác INM(c-g-c)
góc BMI=góc MIN
suy ra IM//AC
Cho tam giác ABC cân tại A. Kẻ ( ).
a) Chứng minh tam giác AKH là tam giác cân
b) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của .
c) Chứng minh: .HK song song BC
Cho tam giác ABC cân tại A. Kẻ ( ).
a) Chứng minh tam giác AKH là tam giác cân
b) Gọi I là giao của BH và CK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của .
c) Chứng minh: .HK song song BC
Cho tam giác ABC, điểm D thuộc cạnh AC sao cho . Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh rằng AI = IM.
Gọi E là trung điểm của DC
Trong ΔBDC, ta có:
M là trung điểm của BC (gt)
E là trung điểm của CD (gt)
Nên ME là đường trung bình của ∆ BCD
⇒ME // BD (tính chất đường trung bình tam giác)
Suy ra: DI // ME
AD = 1/2 DC (gt)
DE = 1/2 DC (cách vẽ)
⇒ AD = DE và DI//ME
Nên AI= IM (tính chất đường trung bình của tam giác).