Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Hoàngg
Xem chi tiết
Thư Hoàngg
Xem chi tiết
wfgwsf
Xem chi tiết
ILoveMath
4 tháng 12 2021 lúc 20:41

A

Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 20:42

Chọn A

ngọc hân
Xem chi tiết
Chanh Xanh
5 tháng 12 2021 lúc 17:33

Tham khảo

 
Quynh
Xem chi tiết
Nguyễn Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 21:42

Câu 1: 

Gọi M(1;0) thuộc (d)

Theo đề, ta có: \(\overrightarrow{IM'}=k\cdot\overrightarrow{IM}\)

=>\(\left\{{}\begin{matrix}x_{M'}-1=k\cdot\left(1-1\right)=0\\y_{M'}=k\cdot\left(0-0\right)=0\end{matrix}\right.\)

=>M'(1;0)

Thay M' vào x+2y+c=0, ta được:

1+c=0

=>c=-1

Nguyễn Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 21:34

Câu 1:

Theo đề, ta có: \(\overrightarrow{IM'}=-2\cdot\overrightarrow{IM}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=-2\cdot\left(-7-2\right)=18\\y-3=-2\cdot\left(2-3\right)=2\end{matrix}\right.\Leftrightarrow M'\left(20;5\right)\)

 

2003
Xem chi tiết
Eren
27 tháng 10 2018 lúc 19:47

Thử xem lại đề

Nguyễn Lê Phước Thịnh
30 tháng 10 2022 lúc 14:01

Sửa đề: C(2;2)

\(\overrightarrow{AB}=\left(6;-10\right)\)

\(\overrightarrow{DC}=\left(-3;5\right)\)

Vì vecto AB=-2vecto DC

nên AB//DC

=>ABCD là hình thang

Thien Nguyen
Xem chi tiết
Akai Haruma
6 tháng 5 2021 lúc 12:28

Lời giải:

Do $I\in (x-2y-1=0)$ nên gọi tọa độ của $I$ là $(2a+1,a)$

Đường tròn đi qua 2 điểm $A,B$ nên: $IA^2=IB^2=R^2$

$\Leftrightarrow (2a+1+2)^2+(a-1)^2=(2a+1-2)^2+(a-3)^2=R^2$

$\Rightarrow a=0$ và $R^2=10$

Vậy PTĐTr là: $(x-1)^2+y^2=10$

Hồng Phúc
6 tháng 5 2021 lúc 12:35

Giả sử \(I=\left(2m+1;m\right)\)

Ta có: \(IA=IB\)

\(\Leftrightarrow\sqrt{\left(-2-2m-1\right)^2+\left(1-m\right)^2}=\sqrt{\left(2-2m-1\right)^2+\left(3-m\right)^2}\)

\(\Leftrightarrow4m^2+9+12m+m^2-2m+1=4m^2-4m+1+m^2-6m+9\)

\(\Leftrightarrow5m^2+10m+10=5m^2-10m+10\)

\(\Leftrightarrow m=0\)

\(\Rightarrow I=\left(1;0\right)\)

Bán kính \(R=\sqrt{\left(2-1\right)^2+3^2}=\sqrt{10}\)

Phương trình đường tròn: \(\left(x-1\right)^2+y^2=10\)

2003
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2022 lúc 13:32

\(\overrightarrow{AM}=\left(m+5;2m\right)\)

\(\overrightarrow{AB}=\left(1;2\right)\)

Để A,M,B thẳng hàng thì \(\dfrac{m+5}{1}=\dfrac{2m}{2}\)

=>m+5=m(loại)