Tìm x biết
x^3+5x^2+9x=-45
Tìm x
x3 - 9x - 5x2 + 45 = 0
x3 - 9x - 5x2 + 45 = 0
⇔ ( x3 - 5x2 ) - ( 9x - 45 ) = 0
⇔ x2( x - 5 ) - 9( x - 5 ) = 0
⇔ ( x - 5 )( x2 - 9 ) = 0
⇔ ( x - 5 )( x - 3 )( x + 3 ) = 0
⇔ x - 5 = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
⇔ x = 5 hoặc x = ±3
\(x^3-9x-5x^2+45=0\)
\(x^3-5x^2-9x+45=0\)
\(x^2\left(x-5\right)-9\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2-9\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
Tìm x biết
a)(x+3)^2(x-2)^2=2x b)7x(x-2)=(x-2) c)8x^3-12x^2+6x-1=0
d)4x^2-9-x(2x-3)=0 e)x^3+5x^2+9x=-45 f)x^3-6x^2-x+30=0
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
f) \(x^3-6x^2-x+30=0\)
\(\Leftrightarrow\left(x^3-x^2-6x\right)-\left(5x^2-5x-30\right)=0\)
\(\Leftrightarrow x\left(x^2-x-6\right)-5\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[x\left(x-2\right)+3\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{5;-3;2\right\}\)
Tìm x
a:x3+6x2+9x=0
b:x3-5x2-9x+45
\(x^3+6x^2+9x=0\)
\(x\left(x^2+6x+9\right)=0\)
\(x\left(x+3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}\)
x3-5x2-9x+45=0
=>(x3-5x2)-(9x-45)=0
=>x2(x-5)-9(x-5)=0
=>(x2-9)(x-5)=0
=>x2-9=0 =>x2=9 => x=3;-3
x-5=0 =>x=5
1.cho f(x)=x^3+5x^2-9x-45
g(x)=x^2-9
biết f(x) chia hết cho g(x)
nêu 3 cách để tìm thương của phép chia
2.tìm đa thức dư trong phép chia
(x^2005+x^2004):(x^2-1)
Tìm x,biết;
a) (3x+1)^2 -9x (x-1) =46
b)5x (x-3) = 7 (3-x)
a)
(3x+1)^2 -9x (x-1) =46
9x2+6x+1-9x2+9x = 46
15x+1=46
15x=45
x=3
b)
5x (x-3) = 7 (3-x)
5x ( x - 3 ) - 7 ( 3 - x ) = 0
5x ( x - 3 ) + 7 ( x - 3 ) = 0
(5x + 7 ) ( x - 3 ) = 0
5x+7=0 hoặc x-3 = 0
5x=-7 hoặc x=3
x= -7 / 5 hoặc x=3
Cho hai biểu thức A = \(\dfrac{x^2-9}{3\left(x+5\right)}\) và B = \(\dfrac{x}{x+3}+\dfrac{2x}{x-3}-\dfrac{3x^2+9}{x^2-9}\) với x ≠ -5; x ≠ ±3
a. Tính giá trị của biểu thức A biết \(x^3+5x^2-9x-45=0\)
b. Rút gọn B
c. Cho P = A : B. Tìm giá trị nguyên của x đề P có giá trị nguyên
\(a, x^3+5x^2-9x-45=0\\ \Leftrightarrow x^2\left(x+5\right)-9\left(x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\left(x\ne-5\right)\\ \text{Với }x=3\Leftrightarrow A=\dfrac{9-9}{3\left(3+5\right)}=0\\ \text{Với }x=-3\Leftrightarrow A=\dfrac{9-9}{3\left(-3+5\right)}=0\\ \text{Vậy }A=0\\ b,B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\\ B=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
tìm x biết
a) 7x(x-2)=(x-2)
b) 4x^2-9-x(2x-3)=0
c) x^3+5x^2+9x=-45
d) x^3-6x^2-x+30=0
e) x^2+16=10x
a)\(7x\left(x-2\right)=\left(x-2\right)\)
\(\Leftrightarrow7x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7x-1=0\\x-2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=2\end{matrix}\right.\)
b)\(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3-x\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-3\end{matrix}\right.\)
c)\(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+9x+5x^2+45=0\)
\(\Leftrightarrow x\left(x^2+9\right)+5\left(x^2+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+9\right)=0\)
Dễ thấy: \(x^2+9\ge 9 >0\forall x\)
\(\Rightarrow x+5=0\Rightarrow x=-5\)
d,e tương tự
tìm x biết (4x^2-5x):x-(9x^3-12x^2):3x^2=3x+5
giúp em thé các anh chi em trên thế giới
a)x^3+5x^2+9x=-45
b)x^3-6x^2-x+30
a. x3 + 5x2 +9x + 45 = 0
<=> x2(x + 5) + 9(x + 5) = 0
<=> (x + 5)(x2 +9)=0
(x+5)= 0 hoặc (x2 + 9)=0 (vô lý)
<=> x = -5