Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Lâm
Xem chi tiết
LÊ MAI THỊ LÊ
Xem chi tiết
trí ngu ngốc
9 tháng 2 2022 lúc 10:17

Hong bé ơi.Bé hong follow anh mà đòi xin đáp án của anh à

trí ngu ngốc
12 tháng 2 2022 lúc 15:53

ko

Bùi thảo ly
25 tháng 6 2023 lúc 20:39

mình nghĩ là B

pham duc anh
Xem chi tiết
Phạm Hữu Tài
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2023 lúc 22:51

\(\dfrac{1}{2022}\cdot A=\dfrac{2022^{100}+1}{2022^{100}+100}=1-\dfrac{99}{2022^{100}+100}\)

\(\dfrac{1}{2022}B=\dfrac{2022^{101}+1}{2022^{101}+100}=1-\dfrac{9}{2022^{101}+100}\)

2022^100+100<2022^101+100

=>-99/2022^100+100<-99/2022^101+100

=>A<B

Vũ Đào
13 tháng 3 2023 lúc 22:52

=> A/2022 = 2022^100+1/2022^100+2022 = 1- 2021/2022^100+2022

=> B/2022 = 2022^101+1/2022^101+2022 = 1- 2021/2022^101+2022

Nhận thấy 2022^101 + 2022 > 2022^100 + 2022

=> 2021/2022^101 + 2022 < 2021/2022^100 + 2022

=> B/2022 > A/2022 => B>A

Vậy A<B

Ngô Châu Anh
Xem chi tiết
Nguyễn Huy Tú
26 tháng 5 2017 lúc 20:27

Ta có: \(A=\frac{2017^{99}+1}{2017^{100}+1}\Rightarrow2017A=\frac{2017^{100}+2017}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\Rightarrow2017B=\frac{2017^{101}+2017}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

\(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

\(\Rightarrow2017A>2017B\Rightarrow A>B\)

Vậy...

Kaori Miyazono
26 tháng 5 2017 lúc 20:27

Đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)nên \(2017A=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\)nên \(2017B=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

Vì \(1=1;\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

Hay \(2017A>2017B\)nên \(A>B\)

Vây \(\frac{2017^{99}+1}{2017^{1001}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)

Thanh Tùng DZ
26 tháng 5 2017 lúc 20:29

đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)\(B=\frac{2017^{100}+1}{2017^{101}+1}\)

Ta có : \(2017A=\frac{2017.\left(2017^{99}+1\right)}{2017^{100}+1}=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(2017B=\frac{2017.\left(2017^{100}+1\right)}{2017^{101}+1}=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

Vì \(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\Leftrightarrow10A>10B\Rightarrow A>B\)

Trần Đình Quân
Xem chi tiết
Nguyễn Đình Dũng
4 tháng 9 2015 lúc 22:45

Xét 99 x 101

= ( 100 - 1 ) x ( 101 - 1 )

= 100 x 100 + 1 x 101 - 1 x 101 - 1 x 1 

= 100 x 100 - 1

Vậy 99 x 101 < 100 x 100

Nguyễn Đình Dũng
4 tháng 9 2015 lúc 22:50

nhầm chút 

Xét 99 x 101

= ( 100 - 1 ) x ( 100 + 1 )

= 100 x 100 + 1 x 101 - 1 x 101 - 1 x 1 

= 100 x 100 - 1

Vậy 99 x 101 < 100 x 100

Nguyễn Minh Dương
Xem chi tiết
Phong
21 tháng 9 2023 lúc 16:13

Ta có:

\(M=\dfrac{100^{100}+1}{100^{99}+1}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)

\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\) 

\(N=\dfrac{100^{101}+1}{100^{100}+1}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)

\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)

Mà: \(100^{101}>100^{100}\)

\(\Rightarrow100^{101}+100>100^{100}+100\)

\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)

\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)

\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)

\(\Rightarrow N< M\)

Nguyễn Đình Dũng
Xem chi tiết
Đinh Tuấn Việt
5 tháng 9 2015 lúc 21:44

Ta có

100 x 100 = 100 x (99 + 1) = 100 x 99 + 100

99 x 101 = 99 x (100 + 1) = 99 x 100 + 99

Vì 100 > 99 nên 100 x 100 > 99 x 101

Giang Hải Anh
Xem chi tiết
phạm minh tâm
18 tháng 7 2018 lúc 20:23

\(100^{99}+1< 100^{100}+1\)

=>A>B

TBQT
19 tháng 7 2018 lúc 7:50

Ta có: Theo cách tính phân số dư , phân số nào có phần dư lớn hơn thì lớn hơn.

\(\frac{100^{^{100^{ }}}+1}{100^{99}+1}\)\(-1\)=\(\frac{100^{100}}{100^{99}+1}-100^{99}\)

\(\frac{100^{101}+1}{100^{100}+1}-1=\frac{100^{101}-100^{100}}{100^{100}+1}\)

Suy ra:A>B