Cho 3 số tự nhiên a.b.c=1.Chứng minh rằng:
(1/ab+a+1)+(b/bc+b+1)+(1/abc+bc+1)
help me huhu
cho số a,b,c thỏa mãn : a.b.c= 1
chứng minh : \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Cho a,b,c thỏa mãn a.b.c = 1
Chứng minh rằng: \(\frac{1}{ab+a+1}\) + \(\frac{1}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\) = 1
Phải là \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+bc+1}=1\) thì mới làm đc bạn à
yêu toán, Mình biết là thế rồi, nhưng ngày mai cô mình thu rồi, không làm là cô bắt viết bản kiểm điểm đấy!!
Mà mình thử mọi kết quả có thể thì thấy vẫn được mà, nhưng mà mình không biết cách làm
Cho 3 số a,b,c thỏa mã abc=1. Hãy chứng minh rằng:
1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b
Ta có:
$\dfrac{1}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{abc+bc+b}$
$=\dfrac{abc}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}$ (do $abc=1$)
$=\dfrac{abc}{a(bc+b+1)}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}$
$=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{1+bc+b}$
$=\dfrac{bc+b+1}{bc+b+1}=1$
(đpcm)
Biết a, b,c là 3 số tự nhiên đôi một nguyên tố cùng nhau. Chứng minh rằng (ab; bc; ca; abc)=1.
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\)ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
Kết luận: abc và ab+bc+ca nguyên tố cùng nhau
Giải
Giả sử \(\left(abc,ab+bc+ca\right)\ne1\)
\(\Rightarrow\)Tồn tại d là số nguyên tố và \(d\inƯC\left(abc,ab+bc+ca\right)\)
\(abc⋮d\)mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 trường hợp
TH1: a chia hết cho d \(\Rightarrow\) ab,ac chia hết cho d
mà ab + bc + ca chia hết cho d
\(\Rightarrow\) bc chia hết cho d \(\Rightarrow\) b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d \(\Rightarrow\) ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\) ac chia hết cho d \(\Rightarrow\) a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d \(\Rightarrow\) ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\) ab chia hết cho d \(\Rightarrow\) a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
Vậy: giả thiết đưa ra là sai
Kết luận: abc và ab + bc + ca nguyên tố cùng nhau
Cần gấp ạ !!!!!
Bài 1 :Tìm 2 số hữu tỉ x và y biết: x-y = x*y = x-y
Bài 2: Tìm số tự nhiên x biết rằng 5 ngũ x +2 = 650
Bài 3: 3 ngũ x-1 + 5 * 3 ngũ x -1= 162
bài 4 : Tìm số tự nhiên x biết rằng : 2 ngũ x +1* 3 ngũ y= 12
Bài 5 : cho 3 số a,b,c thỏa mãn a *b*c = 1 chứng minh:
1 / ab+a+1 + b/ bc+ b+1 + 1/ abc+bc+b =1
1.a)Chứng minh rằng nếu viết thêm vào đằng sau một số tự nhiên có hai chữ;; số gồm chính hai chữ số ấy viết theo thứ tự ngược lại thì được một số chia hết cho 11
b)Cũng chứng minh như trên nhưng đối với số tự nhiên có chữ số
2)Chứng minh rằng không tồn tại các số tự nhiên a,b,c nào mà a.b.c+a=333; a.b.c+b=335;a.b.c+c=341
3)Chứng minh rằng nếu ab=2.cd thì abcd chia hết cho 67
1) gọi số đó là ab
theo bài ra ta có ab+ba=a+10b+b+10a=(10a+a)+(10b+b)=11a+11b
Vì 11a và 11b chia hết cho 11 nên 11a+11b chia hết cho 11
Vậy ab+ba chia hết cho 11
2) - a.b.c+ 2=333
a.b.c =333-2=331
- a.b.c+b=335
b=335-331=2
- a.b.c+c=341
c= 341-331 =10
=> Ta có: a.b.c=331
mà b=4; c=10
=>4.10.c=331
=>40.c=331
mà 331 lại là số nguyên tố
=> ko tồn tại các số tự nhiên a, b ,c nào
3) Có số abcd = 100ab +cd =200cd +cd (vì ab=2cd)
hay = 201cd
mà 201 chia hết cho 67
Do đó nếu ab=2cd thì abcd chia hết cho 67
Cho a,b,c là các số thực thoả mãn a.b.c = 1. Chứng minh rằng :
\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}=1\)
1/1+a+ab +1/1+b+bc +1/1+c+ac
=1/a+1+ab +a/a+ab+abc +ab/ab+abc+acab
=1/a+1+ab +a/a+ab+1 +ab/ab+1+a
=1+a+ab/1+a+ab
=1
vậy 1/a+1+ab +1/1+b+bc +1/1+c+ca =1(đpcm)
Cho a,b,c thỏa mãn a.b.c = 1
Chứng minh rằng: \(\frac{1}{ab+a+1}\) + \(\frac{1}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\) = 1
Cho a.b.c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh
\(\frac{1}{a^2+bc+1}+\frac{1}{b^2+ca+1}+\frac{1}{c^2+ab+1}\le1\)