Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jeon Jungkook
Xem chi tiết
Jeon Jungkook
Xem chi tiết
Hoàng Thục Hiền 1412
26 tháng 2 2017 lúc 20:12

Đặt A=\(\frac{3a+2}{2a-1}\)

Để A có GTLN thì 2A có GTLN

Ta có: 2A=\(\frac{2.\left(3a+2\right)}{2a-1}\)\(=\frac{6a+4}{2a-1}\)\(=\frac{6a-3+7}{2a-1}\)\(=\frac{3.\left(2a-1\right)+7}{2a-1}=\frac{3.\left(2a-1\right)}{2a-}+\frac{7}{2a-1}=3+\frac{7}{2a-1}\)

Để 2A có GTLN thì\(\frac{7}{2-1}\)có GTLN => 2a-1 có GTNN

+) Với a=0 thì 2.a-1=2.0-1=-1. Lúc này:\(\frac{7}{2a-1}=\frac{7}{-1}=-7\)là số nguyên âm, ko đạt GTLN

+) Với a>0, a nhỏ nhất => a=1, thoả mãn \(\frac{7}{2a-1}\)có GTLN

\(\Rightarrow A=\frac{3.1+2}{2.1-1}=\frac{3+2}{2-1}=\frac{5}{1}=5\)

Vậy GTLN của \(\frac{3a+2}{2a-1}\)bằng 5 khi và chỉ khi a=1

mik cũng là ARMY nek bn

Nguyễn Tường Thành
Xem chi tiết
Lê Hoàng Thái
Xem chi tiết
~♡ ☆ Cold Girl ☆ ♡~
20 tháng 2 2018 lúc 10:19

Lê Hoàng Thái nói đúng lắm !. ưm

Nguyễn Đức Hiền
26 tháng 1 2017 lúc 21:45

9

tk mình đi xin cậu đấy  tk nha nha nha nha nha nha nha nha

Lê Hoàng Thái
26 tháng 1 2017 lúc 21:53

Nha nha nha cái đập vào mặt mà nha nha nha.

Thám Tử Lừng Danh Conan
Xem chi tiết
Healer
Xem chi tiết
phạm xuân bách
Xem chi tiết
꧁WღX༺
Xem chi tiết
Tran Le Khanh Linh
24 tháng 3 2020 lúc 20:14

a) \(a\ne0;a\ne1\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)

\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

M>0 khi 4a>0 => a>0

Kết hợp với ĐKXĐ

Vậy M>0 khi a>0 và a\(\ne\)1

c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)

Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)

Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\)khi a=2

Khách vãng lai đã xóa
susamogus
28 tháng 3 2023 lúc 18:17

mik thắc mắc tại sao 3a lại mất vậy

 

Jenny phạm
Xem chi tiết