tìm x :
(x+1250)+x=1+2+3+4+........+2000
Tìm X
A. (X +1)+(X+2)+(X+3)+…+(X+ 100)=5750
B. X+(1+2+3+4+…+50)=2000
C. (X-1)+(X-2)+…+(X-100)=50
\(c,\)\(\left(x-1\right)+\left(x-2\right)+....+\left(x-100\right)=50\)
\(\left(x+x+...+x\right)-\left(1+2+...+100\right)=50\)
\(100x-5050=50\)
\(100x=50+5050\)
\(100x=5100\)
\(\Rightarrow x=\frac{5100}{100}=51\)
\(a,\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(\Rightarrow x=7\)
\(b,x+\left(1+2+3+...+50\right)=2000\)
\(x+\frac{\left[1+50\right]\cdot\left[\left(50-1\right)\div1+1\right]}{2}=2000\)
\(x+1275=2000\)
\(\Rightarrow x=2000-1275=725\)
c , ( x - 1 ) + ( x - 2 ) + ...... + ( x - 100 ) = 50
( x + x + ........ + ) - ( 1 + 2 + ..... + 100 ) = 50
100x - 5050 = 50
100x = 50 + 5050
100x = 5100
=> x = 5100/100 = 51
Tìm x :
a) \(\frac{x+1}{2000}+\frac{x+2}{1999}+\frac{x+ 3}{1998}+\frac{x+4}{1997}=-4\)
\(b.\frac{x+1}{1999}+\frac{x+2}{2000}+\frac{x+3}{2001}=\frac{x+4}{2002}+\frac{x+5}{2003}+\frac{x+6}{2004}\)
\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)
\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
\(=>x+2001=0\)
\(x=-2001\)
\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)
\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
\(=>x+1998=0\)
\(x=-1998\)
dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\frac{x+1}{2000}+\frac{x+2}{1999}+\frac{x+3}{1998}+\frac{x+4}{1997}=-4\)
\(\Leftrightarrow\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\) \(\left(\frac{x+4}{1997}+1\right)=0\)
\(\Leftrightarrow\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(\Leftrightarrow\left(x+2001\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
Mà : \(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\ne0\)
\(\Rightarrow x+2001=0\)
\(\Leftrightarrow x=-2001\)
tìm x biết x+1250=99978-6540
x+1250=9978-6540
x+1250=93438
x+1250=93438-6540
x=92188
x + 1250 = 93438
x = 93438 - 1250
x = 92188
x+1250=99978-6540
x+1250=93438
x+1250=93438-1250
x=92188
Tìm x
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
<=> \(\frac{x+4}{2000}+1+\frac{x+3}{2001}=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
<=> \(\frac{x+4}{2000}+\frac{x+4}{2001}=\frac{x+4}{2002}+\frac{x+4}{2003}\)
<=> \(\left(x+4\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
<=> \(x+4=0\) do 1/2000 + 1/2001 - 1/2002 - 1/2003 khác 0
<=> \(x=-4\)
Vậy...
Tìm x biết:
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
Ta có :
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Vậy ...
Ta có: \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
tìm x
x+1/2009 + x+2/2008 + x+3/2007 + x=10/2000 + x==11/1999 + x+12/1998
Giá trị biểu thức ax(x-y) + y^4(x+y)ax(x−y)+y4(x+y) (aa là số cho trước) tại x=3x=3 và y=-5y=−5 là:
A24a - 125024a−1250
B24a + 125024a+1250
C-24a + 1250−24a+1250
D-24a - 1250−24a−1250
Lời giải luôn nha cảm ơn!
Thế x = 3 , y = -5 vào biểu thức ta được :
a.3[ 3 - ( -5 ) ] + ( -5 )4( 3 - 5 )
= a.3.8 + 625.( -2 )
= 24a - 1250
cho A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Tìm điều kiện xác định và rút gọn A
b, Tìm A khi x=\(4-2\sqrt{3}\)
c, Tìm x để A=\(\dfrac{1}{2}\)
d, Tìm x để A≥\(\dfrac{1}{2}\)
e, Chứng minh A>-5
g, Tìm xϵZ để AϵN
h, Tìm giá trị nhỏ nhất của A
Bài 1: Tìm x:
a, x.(-26)+26:(-2)=(-39)
b, 19-|x+3|=10
Bài 2:Tìm số tự nhiên x:
a, 18 (chia hết) x+4
b, 3x+4 (chia hết) x-3
Bài 3: Tính nhanh
a, 19.(73-219)-219.(19-73)
b, -47+139-(-147)-339-2000
c, 41. (-79)-179.(-41)
Helppp meee=<<
Mình k nè=3
Bài 1: Tìm x:
\(\text{a, x.(-26)+26:(-2)=(-39)}\)
\(x.\left(-26\right)+\left(-13\right)=\left(-39\right)\)
\(\Rightarrow x.\left(-26\right)=52\)
\(x=52:\left(-26\right)\)
\(x=-2\)
\(\text{b, 41.(-79)-179.(-41)}\)
\(=41.\left(-79+179\right)\)
\(=41.100\)
\(=4100\)
\(\text{c, -19.(73-219)-219.(19-73)}\)
\(=-19.73+19.219-219.19+219.73\)
\(=73.\left(-19+219\right)+19.\left(219-219\right)\)
\(=73.200+19.0\)
\(=14600\)
Bài 2:Tìm số tự nhiên x:
\(a,18⋮x+4\)
\(\Rightarrow\left(x+4\right)\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
Ta có bảng sau :
x+4 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 9 | -9 | 18 | -18 |
x | -1 | -5 | -2 | -6 | -1 | -7 | 2 | -10 | 5 | -13 | 14 | -22 |
Vậy \(x\in\left\{...\right\}\)
\(b,3x+4⋮x-3\)
ta có \(\frac{3x+4}{x-3}=3\left(x-3\right)+\frac{13}{x-3}\)
\(=3+\frac{13}{x-3}\)
để \(3x+4⋮x-3\Rightarrow13⋮x-3\)
=> x-3 thuộc ước của 13={1;-1;13;-13}
+x-3=1=>x=(tm)
+x-3=-1=>x=2(tm)
+x-3=-13=>x=-10(tm)
+x-3=13=>x=16(tm)
học tốt
Bài 1: Tìm x:
a, x.(-26)+26:(-2)=(-39)
x.(-26)+(-13)=-39
x.(-26)=-39+13
x.(-26)=-26
x=-26:(-26)
x=1
Vậy x=1
b, 19-|x+3|=10
|x+3|=19-10
|x+3|=9
\(\Rightarrow\orbr{\begin{cases}x+3=9\Rightarrow x=9-3=6\\x+3=-9\Rightarrow x=-9-3=-12\end{cases}}\)
Vậy x=6 hoặc x=-12
Bài 3: Tính nhanh
19.(73-219)-219.(19-73)
=19.73-19.219-219.19+219.73
=(19.73+219.73)-(19,219-219.19)
=[73.(19+219)]-0
=[73.238]-0
=17374
Bài 1
a)-26x-13=-39
-26x=-39+13
-26x=-26
x=1
b)-|x-3|=10-19
-|x-3|=-9
|x-3|=9
x-3=9 hoặc x-3=-9
x=9+3. x=-9+3
x=12. x=-6