Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Tuệ
Xem chi tiết
An Tuệ
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
Hiệu diệu phương
27 tháng 8 2019 lúc 10:17

a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)

b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)

c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)

d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)

e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)

f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)

g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)

Hải Yến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2020 lúc 13:05

1) Ta có: \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=1+\sqrt{2}\)

2) Ta có: \(2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}\)

\(=\sqrt{108}-\sqrt{36\cdot\frac{4}{3}}+\sqrt{75\cdot\frac{9}{25}}\)

\(=\sqrt{108}-\sqrt{48}+\sqrt{27}\)

\(=\sqrt{3}\left(6-4+3\right)\)

\(=5\sqrt{3}\)

3) Sửa đề: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

Ta có: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

\(=\sqrt{2}\cdot\sqrt{4}\cdot\sqrt{3}-10\sqrt{4}\cdot\sqrt{3}+16\cdot\sqrt{4}\cdot\sqrt{3}\)

\(=\sqrt{2}\cdot\sqrt{12}-10\sqrt{12}+16\sqrt{12}\)

\(=\sqrt{12}\left(\sqrt{2}-10+16\right)\)

\(=2\sqrt{3}\left(\sqrt{2}-6\right)\)

\(=2\sqrt{6}-12\sqrt{3}\)

4) Ta có: \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{12}}{6}-\frac{2\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\frac{6\left(2-\sqrt{3}\right)+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{12-6\sqrt{3}+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{6-2\sqrt{3}}{6}\)

\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2\sqrt{3}\cdot\sqrt{3}}\)

\(=\frac{\sqrt{3}-1}{\sqrt{3}}\)

5) Ta có: \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

\(=\frac{\sqrt{3}\left(2+5+3\right)}{\sqrt{15}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)

6) Ta có: \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)

\(=\sqrt{48\cdot\frac{1}{4}}-\sqrt{75\cdot4}-\sqrt{3}+5\sqrt{\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{25\cdot\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{\frac{100}{3}}\)

\(=\sqrt{3}\left(2-10-1+\frac{10}{3}\right)\)

\(=-\frac{17\sqrt{3}}{3}=-\frac{17}{\sqrt{3}}\)

nguyen minh huyen
Xem chi tiết
hello hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 9 2020 lúc 22:33

Bài 1: Thực hiện phép tính

a) Ta có: \(\frac{3+\sqrt{7}}{3-\sqrt{7}}-\frac{3-\sqrt{7}}{3+\sqrt{7}}\)

\(=\frac{\left(3+\sqrt{7}\right)^2}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{\left(3-\sqrt{7}\right)^2}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

\(=\frac{9+6\sqrt{7}+7-\left(9-6\sqrt{7}+7\right)}{9-7}\)

\(=\frac{16+6\sqrt{7}-16+6\sqrt{7}}{2}\)

\(=\frac{12\sqrt{7}}{2}=6\sqrt{7}\)

b)Sửa đề: \(\left(\frac{\sqrt{2}+5}{\sqrt{2}-5}-\frac{\sqrt{2}-5}{\sqrt{2}+5}\right):\frac{\sqrt{2}}{23}\)

Ta có: \(\left(\frac{\sqrt{2}+5}{\sqrt{2}-5}-\frac{\sqrt{2}-5}{\sqrt{2}+5}\right):\frac{\sqrt{2}}{23}\)

\(=\left(\frac{\left(\sqrt{2}+5\right)^2}{\left(\sqrt{2}-5\right)\left(\sqrt{2}+5\right)}-\frac{\left(\sqrt{2}-5\right)^2}{\left(\sqrt{2}+5\right)\left(\sqrt{2}-5\right)}\right)\cdot\frac{23}{\sqrt{2}}\)

\(=\left(\frac{27+10\sqrt{2}-\left(27-10\sqrt{2}\right)}{2-25}\right)\cdot\frac{23}{\sqrt{2}}\)

\(=\frac{27+10\sqrt{2}-27+10\sqrt{2}}{-23}\cdot\frac{23}{\sqrt{2}}\)

\(=\frac{20\sqrt{2}}{-\sqrt{2}}=-20\)

c) Ta có: \(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}+\sqrt{5}\)

\(=\sqrt{25\cdot\frac{1}{5}}+\frac{1}{2}\cdot2\sqrt{5}+\sqrt{5}\)

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}\)

\(=3\sqrt{5}\)

d) Ta có: \(\sqrt{\frac{1}{2}}+\sqrt{4.5}+12.5\)

\(=\frac{1}{\sqrt{2}}+\frac{3}{\sqrt{2}}+12.5\)

\(=2\sqrt{2}+12.5\)

e) Ta có: \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\sqrt{54}+5\sqrt{1\frac{1}{3}}\)

\(=\frac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}-3\sqrt{6}+5\cdot\sqrt{\frac{4}{3}}\)

\(=2\sqrt{3}-10\sqrt{3}-3\sqrt{6}+\frac{10}{\sqrt{3}}\)

\(=-8\sqrt{3}+\frac{10}{\sqrt{3}}-3\sqrt{6}\)

\(=\frac{-24+10}{\sqrt{3}}-\frac{9\sqrt{2}}{\sqrt{3}}\)

\(=\frac{-14-9\sqrt{2}}{\sqrt{3}}\)

Khách vãng lai đã xóa
sara
Xem chi tiết
Nhâm Đắc Huy
19 tháng 10 2019 lúc 23:03

a, = \(\frac{\sqrt{15}}{10}\) + \(\frac{\sqrt{15}}{30}\) - \(\frac{2\sqrt{15}}{15}\)

= \(\sqrt{15}\left(\frac{1}{10}+\frac{1}{30}-\frac{2}{15}\right)\)

= \(\sqrt{15}.0\)

= 0

b, = \(\left(\frac{\sqrt{5}+\sqrt{3}}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{5-3}\right).\sqrt{5}\)

= \(\frac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{2}.\sqrt{5}\)

= \(\frac{2\sqrt{5}}{2}.\sqrt{5}\)

= \(\sqrt{5}.\sqrt{5}\)

= 5

c, = \(\frac{5\sqrt{3}}{\sqrt{15}}+\frac{3\sqrt{5}}{\sqrt{15}}\)

= \(\sqrt{5}+\sqrt{3}\)

d, Mình sửa lại đề bài cho bạn : \(\left(2+\sqrt{5}\right)^2-\left(2-\sqrt{5}\right)^2\)

= \(\left(2+\sqrt{5}-2+\sqrt{5}\right)\left(2+\sqrt{5}+2-\sqrt{5}\right)\)

= \(2\sqrt{5}.4\)

= \(8\sqrt{5}\)

e, = \(\frac{4\sqrt{3}}{3}+15\sqrt{3}-3\sqrt{3}-\frac{20\sqrt{3}}{3}\)

= \(\sqrt{3}.\left(\frac{4}{3}+15-3-\frac{20}{3}\right)\)

= \(\sqrt{3}.\frac{20}{3}\)

= \(\frac{20\sqrt{3}}{3}\)

Khách vãng lai đã xóa
Lê Thu Dương
19 tháng 10 2019 lúc 22:43

a, 320+160−2115

b, (15−3+15+3).5

c, (53+35):15

d, (2+5)2−(2+5)2

e, 1348+375−27−10113

Khách vãng lai đã xóa
Lãnh Hàn
Xem chi tiết
Mặc tử han
Xem chi tiết
Chiharu
29 tháng 9 2019 lúc 11:16

undefined

Chiharu
29 tháng 9 2019 lúc 11:42

undefined

Chiharu
29 tháng 9 2019 lúc 11:17

undefined