Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
NST
22 tháng 7 2017 lúc 14:25

1) không tồn tại

2) không tồn tại

3) không tồn tại

Đức Chu Anh
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
zZz Cool Kid_new zZz
1 tháng 5 2020 lúc 22:57

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

Khách vãng lai đã xóa
Thanh Vân
26 tháng 7 2024 lúc 16:10

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

FallenCelestial
Xem chi tiết
FallenCelestial
27 tháng 5 2021 lúc 8:31

thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc

 

Trần Minh Hoàng
27 tháng 5 2021 lúc 10:01

Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p

\(\Rightarrow a^2-b^2⋮p\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).

+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)

+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)

Do đó \(\left(a^2+1,b^2+1\right)=1\).

Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)

Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).

Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.

Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.

Vậy ....

Lê Huỳnh
Xem chi tiết
NhungNguyễn Trang
Xem chi tiết
Nhật Minh
3 tháng 4 2016 lúc 22:09

Câu hỏi nài có trên OLM  rồi .

Rhider
Xem chi tiết