giai pt
\(\log_2\left(\sqrt{x^2-x+1}+\sqrt{x+1}\right)=\log_2\left(x+2\right)\)
GPT: \(\log_2\left(\sqrt{2x^2+1}+1\right)+\left|x\right|=\log_2\left(\sqrt{2x^2+1}-1\right)+\sqrt{2x^2+1}\)
a) \(\left(\dfrac{1}{9}\right)^{x+1}>\dfrac{1}{81}\);
b) \(\left(\sqrt[4]{3}\right)^x\le27.3^x\);
c) \(log_2\left(x+1\right)\le log_2\left(2-4x\right)\).
\(a,\left(\dfrac{1}{9}\right)^{x+1}>\dfrac{1}{81}\\ \Leftrightarrow\left(\dfrac{1}{9}\right)^{x+1}>\left(\dfrac{1}{9}\right)^2\\ \Leftrightarrow x+1< 2\\ \Leftrightarrow x< 1\)
\(b,\left(\sqrt[4]{3}\right)^x\le27\cdot3^x\\ \Leftrightarrow3^{\dfrac{x}{4}}\le3^{x+3}\\ \Leftrightarrow\dfrac{x}{4}\le3=x\\ \Leftrightarrow-\dfrac{3}{4}x\le3\\ \Leftrightarrow x\ge-4\)
c, ĐK: \(\left\{{}\begin{matrix}x+1>0\\2-4x>0\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{1}{2}\)
\(log_2\left(x+1\right)\le log_2\left(2-4x\right)\\ \Leftrightarrow x+1\le2-4x\\ \Leftrightarrow5x\le1\\ \Leftrightarrow x\le\dfrac{1}{5}\)
Kết hợp với ĐKXĐ, ta được: \(-1< x\le\dfrac{1}{5}\)
tổng tất cả các nghiệm pt:
a, \(log_2\left(x+1\right)+log_2x=1\)
b, \(log_{\dfrac{1}{3}}^2\left(4x\right)-5log_3\left(2x\right)=5\)
c, \(log_2\left(x-1\right)+log_2\left(x-2\right)=log_5125\)
a:
ĐKXĐ: x+1>0 và x>0
=>x>0
=>\(log_2\left(x^2+x\right)=1\)
=>x^2+x=2
=>x^2+x-2=0
=>(x+2)(x-1)=0
=>x=1(nhận) hoặc x=-2(loại)
c: ĐKXĐ: x-1>0 và x-2>0
=>x>2
\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)
=>\(\Leftrightarrow x^2-3x+2=8\)
=>x^2-3x-6=0
=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)
Tổng các nghiệm nguyên của bất phương trình: \(2\log_2\sqrt{x+1}\le2-\log_2\left(x-2\right)\) bằng
\(ĐKXĐ:x>2\)
BPT đã cho tương đương với:
\(2log_2\sqrt{x+1}+log_2\left(x-2\right)\le2\)
\(\Leftrightarrow log_2\left(x+1\right)+log_2\left(x-2\right)\le2\)
\(\Leftrightarrow log_2\left(x^2-x-2\right)\le2\)\(\Leftrightarrow0< x^2-x-2\le2^2\)\(\Leftrightarrow\left[{}\begin{matrix}2< x\le3\\-2\le x< -1\left(l\right)\end{matrix}\right.\)
Vậy tổng các nghiệm nguyên của bpt là 3
GPT: \(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)=2\)
Đặt \(\sqrt{x^2-5x+5}=t>0\)
\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)
Nhận thấy \(t=1\) là 1 nghiệm của pt
Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)
\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm
\(\Rightarrow t=1\) là nghiệm duy nhất của pt
\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Giải phương trình sau :
\(\sqrt{3+\log_2\left(x^2-4x+5\right)}+2\sqrt{5-\log_2\left(x^2-4x+5\right)}\)
Điều kiện :
\(\begin{cases}x^2-4x+5>0\\3+\log_2\left(x^2-4x+5\right)\ge0\\5-\log_2\left(x^2-4x+5\right)\ge0\end{cases}\)
\(\Leftrightarrow x^2-4x+5\le2^5\)
\(\Leftrightarrow2-\sqrt{29}\le x\)\(\le2+\sqrt{29}\)
Đặt \(\begin{cases}u=\sqrt{3+\log_2\left(x^2-4x+5\right)}\\v=\sqrt{5-\log_2\left(x^2-4x+5\right)}\end{cases}\) \(\left(v,u\ge0\right)\)
Khi đó ta có hệ phương trình :
\(\begin{cases}u^2+v^2=8\\u+2v=6\end{cases}\)
Giải ra ta được :
\(\begin{cases}u=2\\v=2\end{cases}\) hoặc \(\begin{cases}u=\frac{2}{5}\\v=\frac{14}{5}\end{cases}\)
Từ đó suy ra \(\log_2\left(x^2-4x+5\right)=1\) hoặc \(\log_2\left(x^2-4x+5\right)=\frac{-71}{25}\) và tìm được 4 nghiệm của phương trình
Gọi m0 là giá trị nhỏ nhất để bất phương trình:
\(1+\log_2\left(2-x\right)-2\log_2\left(m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\right)\le-\log_2\left(x+1\right)\) có nghiệm. m0 thuộc khoảng nào sau đây:
A. (-9;-8) B. (9;10) C. (-10;-9) D. (8;9)
ĐKXĐ: \(-1< x< 2\)
Khi đó:
\(\Leftrightarrow log_2\left(2-x\right)\left(2x+2\right)-2log_2\left(m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\right)\le0\)
\(\Leftrightarrow log_2\frac{\sqrt{\left(2-x\right)\left(2x+2\right)}}{m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)}\le0\)
\(\Rightarrow\frac{\sqrt{\left(2-x\right)\left(2x+2\right)}}{m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)}\le1\)
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}\le m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\)
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}+\frac{x}{2}-4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\le m\)
Đặt \(\sqrt{2-x}+\sqrt{2x+2}=t\Rightarrow\sqrt{3}\le t\le3\)
\(t^2=x+4+2\sqrt{\left(2-x\right)\left(2x+2\right)}\Rightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}+\frac{x}{2}=\frac{t^2}{2}-2\)
\(\Rightarrow\frac{t^2}{2}-4t-2\le m\)
Xét hàm \(f\left(t\right)=\frac{t^2}{2}-4t-2\) trên \(\left[\sqrt{3};3\right]\)
\(\Rightarrow f\left(t\right)_{min}=f\left(3\right)=-\frac{19}{2}\Rightarrow m_{min}=-\frac{19}{2}\)
1) Giải phương trình:
\(4\log_2^2x+x\log_2\left(x+2\right)=2\log_2x\left[x+\log_2\left(x+2\right)\right]\)
2) Tìm tất cả bộ hai số thực \(\left(x;y\right)\) thỏa mãn đẳng thức:
\(x^{\log_2x}+4^y+\left(x-5\right)2^{y+1}+57=18x\)
tìm tập xác định của hàm số sau
a) \(y=log_2\left(2x+6\right)\)
b) \(y=log_2\left(x-6\right)\)
c) \(y=log_3\dfrac{1}{2-x}\)
d) \(y=log_2\left(x-6\right)\left(x+2\right)\)
a: ĐKXĐ: 2x+6>0
=>2x>-6
=>x>-2
b: ĐKXĐ: x-6>0
=>x>6
c: ĐKXĐ: \(\left\{{}\begin{matrix}\dfrac{1}{2-x}>0\\2-x\ne0\end{matrix}\right.\)
=>2-x>0
=>x<2
d: ĐKXĐ: \(\left(x-6\right)\left(x+2\right)>0\)
=>\(\left[{}\begin{matrix}x-6>0\\x+2< 0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x>6\\x< -2\end{matrix}\right.\)
Giải các phương trình sau:
a) \(\left(\dfrac{1}{9}\right)^{x+1}>\dfrac{1}{81}\)
b) \(\left(\sqrt[4]{3}\right)^x\le27.3^x\)
c) \(log_2\left(x+1\right)\le log_2\left(2-4x\right)\)