Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Bùi Văn
Xem chi tiết
Anh Bùi Văn
20 tháng 9 2021 lúc 23:10

Giai giup bai nay

Quân Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 6 2021 lúc 15:58

Kẻ 2 đường cao AE, BF

Gọi G là giao điểm 2 đường chéo

\(\widehat{ACD}=\widehat{BDC}\Rightarrow\Delta GCD\) cân tại G \(\Rightarrow GC=GD\) (1)

\(\left\{{}\begin{matrix}\widehat{ACD}=\widehat{BAC}\left(slt\right)\\\widehat{BDC}=\widehat{ABD}\left(slt\right)\\\widehat{ACD}=\widehat{BDC}\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BAC}=\widehat{ABD}\) \(\Rightarrow\Delta GAB\) cân tại G \(\Rightarrow GA=GB\) (2)

(1); (2) \(\Rightarrow AC=BD\Rightarrow ABCD\) là hình thang cân

\(\Rightarrow\left\{{}\begin{matrix}AB=EF\\DE=CF\end{matrix}\right.\)

Áp dụng định lý Pitago: \(\left\{{}\begin{matrix}BD^2=DF^2+BF^2\\BC^2=BF^2+CF^2\end{matrix}\right.\)

\(\Rightarrow BD^2-BC^2=DF^2-CF^2=\left(DF+CF\right)\left(DF-CF\right)=CD.EF=CD.AB\) (đpcm)

Nguyễn Việt Lâm
22 tháng 6 2021 lúc 15:59

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 11 2017 lúc 4:27

Chứng minh được: ∆DBC:∆BAD =>  D B C ^ = B A D ^

=>  s đ D B C ⏜ = 1 2 s đ B m D ⏜

=> BC là tiếp tuyến của (O)

Minh Trần
Xem chi tiết
Minh Trần
22 tháng 9 2021 lúc 22:22

giúp em với các thầy cô ơi

Ngọc Gaming
Xem chi tiết
....
Xem chi tiết
missing you =
14 tháng 6 2021 lúc 18:00

từ A hạ \(AE\perp DC\)

từ B hạ \(BF\perp DC\)

\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật

\(=>AB=EF=2cm\)

vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)

\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)

xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)

nguyễn bảo anh
Xem chi tiết
Vũ Ngọc Cát Thảo
Xem chi tiết
Lê Ngọc Linh
Xem chi tiết
Mai Thành Đạt
Xem chi tiết