Cho hình thang ABCD (AB//CD) có BD2 = AC.CD; Chứng minh đường tròn ngoại tiếp tam giác ABD tiếp xúc với BC.
Cho hình thang ABCD(AB//CD) có góc ACD=góc BDC.Chứng minh BD2-BC2=AB.CD.
Cho hình thang ABCD(AB//CD) có góc ACD=góc BDC.Chứng minh BD2-BC2=AB.CD
Kẻ 2 đường cao AE, BF
Gọi G là giao điểm 2 đường chéo
\(\widehat{ACD}=\widehat{BDC}\Rightarrow\Delta GCD\) cân tại G \(\Rightarrow GC=GD\) (1)
\(\left\{{}\begin{matrix}\widehat{ACD}=\widehat{BAC}\left(slt\right)\\\widehat{BDC}=\widehat{ABD}\left(slt\right)\\\widehat{ACD}=\widehat{BDC}\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BAC}=\widehat{ABD}\) \(\Rightarrow\Delta GAB\) cân tại G \(\Rightarrow GA=GB\) (2)
(1); (2) \(\Rightarrow AC=BD\Rightarrow ABCD\) là hình thang cân
\(\Rightarrow\left\{{}\begin{matrix}AB=EF\\DE=CF\end{matrix}\right.\)
Áp dụng định lý Pitago: \(\left\{{}\begin{matrix}BD^2=DF^2+BF^2\\BC^2=BF^2+CF^2\end{matrix}\right.\)
\(\Rightarrow BD^2-BC^2=DF^2-CF^2=\left(DF+CF\right)\left(DF-CF\right)=CD.EF=CD.AB\) (đpcm)
Cho hình thang ABCD (AB//CD) có BD2 = AB.CD. Chứng minh đường tròn ngoại tiếp tam giác ABD tiếp xúc với BC
Chứng minh được: ∆DBC:∆BAD => D B C ^ = B A D ^
=> s đ D B C ⏜ = 1 2 s đ B m D ⏜
=> BC là tiếp tuyến của (O)
cho hình thang ABCD (AB//CD) có đường chéo BD hợp với BC một góc bằng góc DAB
a) chứng minh BD2 = AB.CD
b) áp dụng tính BD biết: AB = \(\dfrac{10\sqrt{7+4\sqrt{3}}-10\sqrt{3}}{10:2\pi}\); CD = 14,2524. cotg2 35016'
Cho ABCD là hình thang có góc DAB bằng góc DBC a/ C/m/r: ∆ ABC đồng dạng ∆ CBD b/ C/m/r: BD2 = AB*DC
Cho hình thang cân ABCD có AB//CD, AB = 2cm, CD = 6cm, AD = BC = 3cm. Tính
diện tích hình thang ABCD
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)
Cho hình thang ABCD (AB//CD) có BD2=AB.CD. Chứng minh đường tròn
ngoại tiếp tam giác ABD tiếp xúc với BC.
Cho hình thang ABCD ( AB//CD ) có AB= 9cm; CD= 30cm; AD=13cm; BC=20cm. Tính S hình thang ABCD ?
1. Cho hình thang ABCD ( AB//CD ) có AB= 9cm; CD= 30cm; AD=13cm; BC=20cm. Tính S hình thang ABCD ?
Cho hình thang cân ABCD ( AB // CD ) có AB=13cm,CD=25cm,góc D=45 độ.Tìm diện tích hình thang ABCD ?