cho tam giác ABC , M là một điểm nằm trong tam giác. a,CM :AM+BM+CM>AB+BC+AC/2
cho tam giác ABC, điểm M nằm trong tam giác ABC. CM AM+BM+CM<AB+BC+AC
Help me!
Cho tam giác ABC đều. M là một điểm nằm trong tam giác. Lấy điểm D, E, F lần lượt thuộc AC, AB, BC sao cho DE=AM, DF=CM, EF=BM. Xác định vị trí của M để diện tích tam giác DEF đạt giá trị lớn nhất.
Cho tam giác ABC và điểm M nằm trong tam giác. Gọi AM, BM, CM cắt BC, CA, AB lần lượt tại A', B', C'. Chứng minh rằng M là trọng tâm tam giác ABC khi và chỉ khi M là trọng tâm tam giác A'B'C'
Cho tam giác ABC, trực tâm H. M là điểm nằm trong tam giác. AM cắt BC tại A', BM cắt BC tại B', CM cắt AB tại C'.
CMR: \(\frac{AM}{MA'}+\frac{BM}{MB'}+\frac{CM}{MC'}\ge6\)
Đặt \(S_{AMB}=a;S_{BMC}=b;S_{CMA}=c\)
Ta có \(\frac{AM}{MA'}+\frac{BM}{MB'}+\frac{MC}{MC'}=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)=\(\frac{a}{b}+\frac{c}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge6\)(cô-si)
Cho tam giác ABC ( AB<AC) có AM là phân giác của góc A . ( M thuộc BC ) . Trên AC lấy D sao cho AD = AB .
a) CM: BM=MD
b) gọi K là giao điểm của AB và DM . CM : tam giác DAK = tam giác BAC
c) CM: tam giác AKC cân
d) so sánh : BM và CM
a: Xét ΔABM và ΔADM có
AB=AD
góc BAM=góc DAM
AM chung
Do đó: ΔABM=ΔADM
SUy ra: MB=MD
b: Xét ΔDAK và ΔBAC có
góc ADK=góc ABC
AD=AB
góc DAK chung
Do đó: ΔDAK=ΔBAC
c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A
d: Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
mà AB<AC
nên BM<CM
Cho M là một điểm của tam giác ABC .CMR : \(\frac{AB+AC+BC}{2}\)<AM+BM+CM<AB+AC+BC
Cho tam giác ABC có AC<AB. Trên tia AC lấy điểm M sao cho AB=AM. AD là tia phân giác của góc BAC (D thuộc BC).
a) Cm: Tam giác ABC = tam giác AMD
b) Gọi I là giao điểm của AD và BM. Cm: Tam giác ABI=Tam giác AMI. Từ đó suy ra: AD vuông góc BM.
c) Trên tia đối của tia AC lấy điểm Q sao cho AQ=AM. Trên tia đối của tia AB lấy điểm P sao cho AB=AP. Cm: PQ song song BM.
d) Gọi K là trung điểm của PQ. Cm: A, K, I thẳng hàng
CÁC BẠN GIÚP MÌNH NHÉ !
1. Cho tam giác ABC. Trên các tia đối AB, AC lần lượt lấy các điểm E, F sao cho AE=AC, AF=AB. CM: BC=EF.
2. Cho tam giác ABC có M là trung điểm BC. Trên tia AM lấy điểm D sao cho AM=MD.
a, CM: tam giác ABC = tam giác DMC
b, CM: AB//CD
c, CM: AC = BD
d, CM: tam giác ABC = tam giác DCB
1.
Xét tam giác BAC và tam giác FAE có:
BA = FA (gt)
BAC = FAE (2 góc đối đỉnh)
AC = AE (gt)
=> Tam giác BAC = Tam giác FAE (c.g.c)
=> BC = FE (2 cạnh tương ứng)
2.
Xét tam giác AMB và tam giác DMC có:
AM = DM (gt)
AMB = DMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác DMC (c.g.c)
=> ABM = DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // DC
Xét tam giác AMC và tam giác DMB có:
AM = DM (gt)
AMC = DMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của CB)
=> Tam giác AMC = Tam giác DMB (c.g.c)
=> AC = DB (2 cạnh tương ứng)
Xét tam giác ABC và tam giác DCB có:
AB = DC (tam giác AMB = tam giác DMC)
BC chung
AC = DB (chứng minh trên)
=> Tam giác ABC = Tam giác DCB (c.c.c)
cho hình tam giác ABC có góc A vuông, AB = 30 cm; AC = 45 cm. M là một điểm nằm trên cạnh AB sao cho AM = 20 cm. Từ M kẻ đường thẳng song song với cạnh AC cắt BC tại điểm N. Tính diện tích tam giác AMN
Minh dang ra co zi tick truoc minh ho not
cho tam giác ABC, một điểm M tùy ý trong tam giác. Các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, Ac, AB tại D,E, F. Chứng minh rằng: \(\dfrac{AM}{AD}+\dfrac{BM}{BE}+\dfrac{CM}{CF}\) là hằng số