Chứng minh rằng: (1999+19992+19993+...+19991998) chia hết cho 2000
Chứng minh rằng : S= (1999+1999^2+1999^3 +....+1999^1998) chia hết cho 2000
S= (1999+1999^2+1999^3 +....+1999^1998)
=(1999+1999^2)+(1999^3+1999^4)+...+(1999^1997+1999^1998)
=1999(1+1999)+1999^3(1+1999)+...+1999^1997(1+1999)
=1999.2000+1999^3.2000+...+1999^1997.2000
=2000(1999+1999^3+...+1999^1997) CHIA HET CHO 2000
Vậy S chia het cho 2000(đpcm)
chứng minh rằng : A= ( 1999+ 19992 + 19993+ ...19991998) chia hết cho 2000
chứng minh rằng
a. 2012^2000 - 2^1000 chia hết cho 10
b. 1999^2001+2001^2000 chia hết cho 10
Chứng minh rằng
\(1999^{2016}+1999^{2015}+1999^{2014}+...+1999^2+1999\)chia hết cho (-2000)
chứng minh rằng :
a, A= ( 1999+ 19992 + 19993+ ...19991998) chia hết cho 2000
b,B= 7+73+75+...+71999 chia hết cho 35
A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)
b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5
Chứng minh rằng: x2000 - 200x + 1999 chia hết cho x2 - 2x + 1
cho A=1+3+3^2+3^3+.....+3^1999+3^2000.Chứng minh rằng A chia hết cho 13
A=1+3+3^2+3^3+.....+3^1999+3^2000
A=(1+3+3^2)+(3^3+3^4+3^5)+.....+(3^1998+3^1999+3^2000)
A=(1+3+3^2)+3^3(1+3+3^2)+.....+3^1998.(1+3+3^2)
A=1.13+3^3.13+...+3^1998.13
A=13.(1+3^3+...+3^1998)
=>A chia hết cho 13
Vậy....
Hok tốt!
cho A=1+3+3^2+3^3+.....+3^1999+3^2000.Chứng minh rằng A chia hết cho 13
S=1999+19992+19993+...+19991998
=(1999+19992)+(19993+19994)+...+(19991997+19991998)
=1999(1+1999)+19993(1+1999)+...+19991997(1+1999)
=1999.2000+19993.2000+...+19991997.2000
=2000.(1999+19993+...+19991997)
Vậy S chia hết cho 2000
TA CÓ
1999+19992+...+19991998
=(1999+19992)+....+(19991997+19991998)
=1999(1+1999)+...+19991997(1+1999)
=2000(1999+19993+...19991997) Chia hết cho 2000
CHÚC BẠN HỌC TỐT