So sánh A=10^2012 + 1 / 10^2011 + 1 và B =10^2011 + 1 / 20^2010 + 1
So sánh A và B, biết A= 102010+1/102011 +1 và B= 102011+1/102012+1
Cho C=\(10^{2010}+\frac{1}{10^{2010}}\)
Xét \(A_1=10^{2010}+\frac{1}{10^{2011}}\)và \(B^{ }_1=10^{2011}+\frac{1}{10^{2012}}\)
Ta có \(A_1-C=10^{2010}+\frac{1}{10^{2010}}-10^{2010}-\frac{1}{10^{2010}}\)
\(A_1-C=10.\left(\frac{1}{10^{2011}}-\frac{1}{10^{2010}}\right)\)
Giair tượng tự ta được \(B_1-C=10^{2010}.\left(9+\frac{1}{10^{2012}}-\frac{1}{10^{2010}}\right)\)
Ta thấy \(\frac{1}{10^{2012}}-\frac{1}{10^{2010}}
So sánh A và B,biết:
A=\(\frac{10^{2010}+1}{10^{2011}+1}\) và B=\(\frac{10^{2011}+1}{10^{2012}+1}\)
Vì \(\frac{10^{2011}+1}{10^{2012}+1}< 1\)
=> \(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}=\frac{10^{2011}+10}{10^{2012}+10}=\frac{10\left(10^{2010}+1\right)}{10\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy A > B
CHO HOI NHE
So sánh :
A=102010+1 / 102011+1 và B= 102011+1 /102012+1
AI làm đúng mình sẽ tick
Dễ thấy B < 1 vì 102011 + 1 < 102012 + 1. Áp dụng tính chất nếu \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ta có :
\(B=\frac{10^{2011}+1}{10^{2012}+1}<\frac{\left(10^{2011}+1\right)+9}{\left(10^{2012}+1\right)+9}=\frac{10^{2011}+10}{10^{2012}+10}=\frac{10.\left(10^{2010}+1\right)}{10.\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy A > B
Hãy so sánh:
1- A=20112010+1/20112011+1 với B=20112011+1/20122012+1
2- B=-7/102011+-15/102012 với N=-15/102011+-8/102012
So sánh
a, A= 10^11-1/10^12-1 và B = 10^10+1/10^11+1
b, A= -9/10^2010+-19/10^2011 và B = -9/10^2011+-19/10^2010
Ko dùng máy tính hãy so sánh:
a, A=2011^2010+1/2011^2011+1 với B=2011^2011+1/2011^2012+1
b, M=-7/10^2011+-15/10^2012 với N=-15/10^2011+-8/10^2012
c, N=5/10^2005+11/10^2006 với M=11/10^2005+5/10^2006
Ai nhanh mình tk cho !
Giải đầy đủ nha !
b1: So sánh:
a, A=\(\frac{10^{2010}+1}{10^{2011}+1}\) và B=\(\frac{10^{2011}+1}{10^{2012}+1}\)
b,\(\left(\frac{-1}{2}\right)^{11}\) và \(\left(\frac{-1}{2}\right)^{13}\)
a) Ta có :
\(A=\frac{10^{2010}+1}{10^{2011}+1}\)
\(\Rightarrow10A=\frac{10^{2011}+10}{10^{2011}+1}=\frac{\left(10^{2011}+1\right)+9}{10^{2011}+1}=1+\frac{9}{10^{2011}+1}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}\)
\(\Rightarrow10B=\frac{10^{2012}+10}{10^{2012}+1}=\frac{\left(10^{2012}+1\right)+9}{10^{2012}+1}=1+\frac{9}{10^{2012}+1}\)
Vì \(\frac{9}{10^{2011}+1}>\frac{9}{10^{2012}+1}\)nên \(10A>10B\)
\(\Rightarrow A>B\)
Vậy : \(A>B\)
b) Ta có :
\(\left(\frac{-1}{2}\right)^{11}=\frac{-1^{11}}{2^{11}}=\frac{-1}{2^{11}}\)
\(\left(\frac{-1}{2}\right)^{13}=\frac{-1^{13}}{2^{13}}=\frac{-1}{2^{13}}\)
Vì \(\frac{-1}{2^{11}}>\frac{-1}{2^{13}}\)nên \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
Vậy : \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+10}{10^{2012}+10}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10\cdot\left(10^{2010}+1\right)}{10\cdot\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy : B < A
So sánh:\(\dfrac{10^{2011}+1}{10^{2012}+1}và\dfrac{10^{2010}+1}{10^{2011}+1}\)
a/ Áp dụng bất đẳng thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
Ta có :
\(\dfrac{10^{2011}+1}{10^{2012}+1}< 1\)
\(\Leftrightarrow\dfrac{10^{2011}+1}{10^{2012}+1}< \dfrac{10^{2011}+1+9}{10^{2012}+1+9}=\dfrac{10^{2011}+10}{10^{2012}+10}=\dfrac{10\left(10^{2010}+1\right)}{10\left(10^{2011}+1\right)}=\dfrac{10^{2010}+1}{10^{2011}+1}\)
\(\Leftrightarrow\dfrac{10^{2011}+1}{10^{2012}+1}< \dfrac{10^{2010}+1}{10^{2011}+1}\)
so sánh
a) 2001/2002 và 2000/2001
b) (1 / 80)^7 và (1 / 243)^6
c) (3 / 8)^5 và (5 / 243)^3
d) A= 2011/2012 + 2012/2013 và B= 2011+2012/2012+2013
e) C = 20^10 + 1 / 20^10-1 và D= 20^10-1 / 20^10-3
g) G= 10^100 +2/ 10^100-1 và H = 10^8/10^8-3
h) E= 98^99+1/ 98^89+1 và F= 98^98 +1/ 98^88+1
a, Ta có: \(\frac{2001}{2002}=\frac{2002-1}{2002}=\frac{2002}{2002}-\frac{1}{2002}=1-\frac{1}{2002}\)
\(\frac{2000}{2001}=\frac{2001-1}{2001}=\frac{2001}{2001}-\frac{1}{2001}=1-\frac{1}{2001}\)
Vì \(\frac{1}{2002}< \frac{1}{2001}\Rightarrow1-\frac{1}{2002}>1-\frac{1}{2001}\Rightarrow\frac{2001}{2002}>\frac{2000}{2001}\)
b, Ta có: \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)^7=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)
\(\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{30}}\)
Vì \(\frac{1}{3^{28}}>\frac{1}{3^{30}}\Rightarrow\left(\frac{1}{81}\right)^7>\left(\frac{1}{243}\right)^6\Rightarrow\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^6\)
c, Ta có: \(\left(\frac{3}{8}\right)^5=\frac{3^5}{\left(2^3\right)^5}=\frac{243}{2^{15}}>\frac{243}{3^{15}}>\frac{125}{3^{15}}=\frac{5^3}{\left(3^5\right)^3}=\frac{5^3}{243^3}=\left(\frac{5}{243}\right)^3\)
Vậy \(\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)
d, Ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
e, \(C=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(D=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)
Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\Rightarrow C< D\)
g, \(G=\frac{10^{100}+2}{10^{100}-1}=\frac{10^{100}-1+3}{10^{100}-1}=\frac{10^{100}-1}{10^{100}-1}+\frac{3}{10^{100}-1}=1+\frac{3}{10^{100}-1}\)
\(H=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^{100}-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^{100}-1}< 1+\frac{3}{10^8-3}\Rightarrow G< H\)
h, Vì E < 1 nên:
\(E=\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=F\)
Vậy E = F