Chứng tỏ \(B=\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2\left(x+1\right)}\) không âm với mọi giá trị x
Cho \(A=\left|\text{ }2x^4+3x^2+1\right|-\left|-2x^4-x^2+1\right|\)
Chứng tỏ giá trị của A luôn không âm với mọi giá trị của x
Do giá trị tuyệt đối \(2x^4+3x^2+1\)và giá trị tuyệt đói của \(-2x^4-x^2+1\)luôn \(\ge\)0 với mọi x ,y
nên A = \(2x^4+3x^2+1+2x^4+x^2-1\)
\(=4x^4+4x^2=4\left(x^4+x^2\right)\)
Do \(x^4+x^2\ge\)0 với mọi x
\(\Rightarrow\)\(4\left(x^4+x^2\right)\)\(\ge\)0 với mọi x
\(\Rightarrow\)A \(\ge\)0 với mọi x
\(\Rightarrow\) A không âm với mọi x (đpcm)
Chứng minh rằng :
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-31\)
Luôn luôn không âm với mọi giá trị của x
Đặt x2+1=a(a\(\ge1\))
=> A= a4+9a3+21a2-a-30
=(a-1)(a3+10a2+31a+30)
Do a\(\ge1\)=>\(\hept{\begin{cases}a-1\ge0\\a^3+10a^2+31a+30>0\end{cases}}\)
=> A\(\ge0\)(ĐPCM)
Chú ý nếu \(c>0\) thì \(\left(a+b\right)^2+c\) và \(\left(a-b\right)^2+c\) đều dương với mọi a, b
Áp dụng điều này chứng minh rằng :
a) Với mọi giá trị x khác \(\pm1\), biểu thức :
\(\dfrac{x+2}{x-1}.\left(\dfrac{x^3}{2x+2}+1\right)-\dfrac{8x+7}{2x^2-2}\) luôn có giá trị dương
b) Với mọi giá trị của x khác 0 và khác - 3, biểu thức :
\(\dfrac{1-x^2}{x}.\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\) luôn có giá trị âm
Vì \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)
a) Tìm tất cả các giá trị của tham số m để \(g\left(x\right)=4mx^2-4\left(m-1\right)x+m-3\) luôn luôn âm với mọi x thuộc R
b) Tìm tất cả các giá trị của tham số m để \(f\left(x\right)=x^2-2\left(m+2\right)x-2m^2+3m+4\) không âm với mọi m thuộc R
c) Bất pt \(x^2+2mx+m^2-5m+6>0\) ( m là tham số thực) có nghiệm với mọi x thuộc R khi \(m\in\left(-\infty;\dfrac{a}{b}\right)\) với \(a,b\in Z\) và \(\dfrac{a}{b}\) là phân số tối giản. Tính giá trị biểu thức a+2b
Chứng minh rằng giá trị của A luôn không âm với mọi x,y khác 0
\(A=\left(7x^5y^2-45x^4y^3\right):\left(3x^3-y^2\right)-\left(\frac{5}{2}x^2y^4-2xy^5\right):\frac{1}{2}xy^3\)
Chứng minh rằng :
a) Giá trị của biểu thức :
\(\left(\dfrac{x+1}{x}\right)^2:\left[\dfrac{x^2+1}{x^2}+\dfrac{2}{x+1}\left(\dfrac{1}{x}+1\right)\right]\) bằng 1 với mọi giá trị \(x\ne0;x\ne-1\)
b) Giá trị của biểu thức :
\(\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\) bằng 1 khi \(x\ne0;x\ne-3;x\ne3;x\ne-\dfrac{3}{2}\)
Cho B=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}-\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
a)Rút gọn B
b)Tìm m để với mọi giá trị x>9 ta có \(m\left(\sqrt{x}-3\right)B>x+1\)
a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)
=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)
=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)
=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)
Để BPT luôn đúng thì m<-0,3
Chứng tỏ thương của phép chia sau là số dương với mọi giá trị của biến
\([\left(x^4+1\right)^5-2\left(x^4+1\right)^4+3\left(x^4+1\right)^3]\div\left(x^4+1\right)^3\)
Chứng tỏ rằng với mọi x thuộc Q thi giá trị biểu thức M=\(\dfrac{3\left(x^2+1\right)+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)
là số dương
Lời giải:
$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$
Ta thấy:
$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:
$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$
$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi
$x\mathbb{Q}, y\in\mathbb{R}$
Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)
Hay $M$ là số dương (đpcm)