Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy Nguyễn Đức
Xem chi tiết
Lê Mạnh Hùng
21 tháng 11 2016 lúc 15:47

Do giá trị tuyệt đối \(2x^4+3x^2+1\)và giá trị tuyệt đói của \(-2x^4-x^2+1\)luôn \(\ge\)0 với mọi x ,y 

nên A = \(2x^4+3x^2+1+2x^4+x^2-1\)

\(=4x^4+4x^2=4\left(x^4+x^2\right)\)

Do \(x^4+x^2\ge\)0 với mọi x 

\(\Rightarrow\)\(4\left(x^4+x^2\right)\)\(\ge\)0 với mọi x 

\(\Rightarrow\)\(\ge\)0 với mọi x 

\(\Rightarrow\) A không âm với mọi x (đpcm)

phan gia huy
Xem chi tiết
Phúc
10 tháng 2 2018 lúc 16:55

Đặt x2+1=a(a\(\ge1\))

=> A= a4+9a3+21a2-a-30

        =(a-1)(a3+10a2+31a+30)

Do a\(\ge1\)=>\(\hept{\begin{cases}a-1\ge0\\a^3+10a^2+31a+30>0\end{cases}}\)

=> A\(\ge0\)(ĐPCM)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
24 tháng 6 2017 lúc 14:42

Phân thức đại số

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)

Kimian Hajan Ruventaren
Xem chi tiết
Sắc màu
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
24 tháng 6 2017 lúc 14:48

Phân thức đại số

Phân thức đại số

Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2023 lúc 22:55

a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)

=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)

=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)

=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)

Để BPT luôn đúng thì m<-0,3

nứng lên
Xem chi tiết
Anime forever
Xem chi tiết
Akai Haruma
1 tháng 4 2021 lúc 2:09

Lời giải:

$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$

Ta thấy:

$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:

$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$

$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi 

$x\mathbb{Q}, y\in\mathbb{R}$

Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)

Hay $M$ là số dương (đpcm)